
Chaudhuri, Nantes-Sobrinho (Eds.): International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2025)

EPTCS ??, 2025, pp. 1–17, doi:10.4204/EPTCS.??.??Guermond and G. Nadathur

licensed under the

Commons Attribution License.

Ground Stratification for a

Logic of Definitions with Induction

Nathan Guermond Gopalan Nadathur

guerm001@umn.edu ngopalan@umn.edu

University of Minnesota Twin-Cities
Minnesota, USA

The logic underlying the Abella proof assistant includes mechanisms for interpreting atomic pred-

icates through fixed point definitions that can additionally be treated inductively or co-inductively.

However, the original formulation of the logic includes a strict stratification condition on definitions

that is too restrictive for some applications such as those that use a logical relations based approach

to semantic equivalence. Tiu has shown how this restriction can be eased by utilizing a weaker no-

tion referred to as ground stratification. Tiu’s results were limited to a version of the logic that does

not treat inductive definitions. We show here that they can be extended to cover such definitions.

While our results are obtained by using techniques that have been previously deployed in related

ways in this context, their use is sensitive to the particular way in which we generalize the logic.

In particular, although ground stratification may be used with arbitrary fixed-point definitions, we

show that weakening stratification to this form for inductive definitions leads to inconsistency. The

particular generalization we describe accords well with the way logical relations are used in prac-

tice. Our results are also a intermediate step to building a more flexible form for definitions into the

full logic underlying Abella, which additionally includes co-induction, generic quantification, and a

mechanism referred to as nominal abstraction for analyzing occurrences of objects in terms that are

governed by generic quantifiers.

1 Introduction

This paper concerns a family of first-order predicate logics that originate from the work of McDowell

and Miller [11] and that have culminated in the logic G that underlies the proof assistant Abella [7].

These logics endow a conventional predicate logic with the capability of treating predicate constants as

defined symbols, to be interpreted via formulas that have been associated with them by a definition. More

specifically, the definitions that are associated with predicate constants are given a fixed-point reading

that can be further refined to correspond to the least or greatest fixed-point, thereby adding the capability

of inductive and co-inductive reasoning to the logic. These logics have been especially useful in encoding

and reasoning about object systems that are described in a rule-based and relational fashion: the rules in

the object system description can be translated into definitions of predicate constants that represent the

relevant relations and the treatment of definitions in the logic provides a transparent means for capturing

the informal style of reasoning associated with rule-based specifications.

An important aspect of the logics of interest is that the forms of definitions must be sufficiently

constrained to ensure consistency. The definition of a predicate constant can include a use of that constant

itself, thereby supporting recursive specifications. However, a definition must not be circular in that it

assumes its own existence in its construction. In logics of definitions, this requirement translates into

restrictions on the negative occurrences of the predicate constant in the formula defining it. The condition
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imposed in the logic described in [11], which has carried over to the logic G, is that the predicate constant

must not appear to the left of a top-level implication symbol in that formula. Concretely, this condition

takes the form of a stratification requirement: there must be an ordering on predicate constants that

determines which of them have been already defined and can therefore be used negatively in the definition

of another predicate constant. Unfortunately, the stratification restriction based on predicate names is too

strong for some applications. A prime example of this is that of logical relations that are often used

in reasoning about programming languages properties. The definitions of these relations are typically

indexed by types and assume their own definition, albeit for structurally smaller types.

This work is part of the effort to allow for more permissive definitions so as to support the described

applications. In past work [16], Tiu has developed the notion of ground stratification that effectively

allows for the building in of the arguments of an atomic formula into the stratification ordering. The

logic considered by Tiu limits definitions to a generic fixed-point variety with inductive reasoning being

realized through natural number induction. The results in this paper are to be viewed in the context of

Tiu’s work and have a twofold character. First, we show that stronger conditions must be satisfied by

definitions in the case of predicate constants that are to be treated inductively. In particular, we show that

easing the restriction to ground stratification for these constants can lead to an inconsistent logic. Second,

we show that if a stronger form of stratification for such constants is coupled with ground quantification

for predicate constants that are interpreted via generic fixed-points, then the logic is consistent. Proofs of

consistency for logics typically proceed by showing a property called cut-elimination for them. However,

such a proof is elusive for our logic. Instead, we reduce consistency for it to consistency for a ground

version, for which we show a cut-elimination result. In providing such a proof, we follow the lead of [16],

using ideas from [15] in the additional treatment of induction.

The rest of the paper is organized as follows. In the next section we present the logic of study,

describing in its context the particular mix of stratification conditions that are needed for consistency.

Section 3 exposes the need for the restrictions imposed on the allowable definitions. Section 4 presents

some examples that show, amongst other things, that the logic described is capable of encoding a rea-

soning style that is based on using logical relations. Section 5 sketches the proof of consistency for the

logic.1 We conclude the paper in Section 6 with a discussion of related and future work.

2 A Logic with Definitions and Induction

The logic that we consider in this paper, which we call LDµ , has an intuitionistic, first-order version of

Church’s Simple Theory of Types [5] as its core. It extends this logic by allowing atomic predicates to

be treated as defined symbols, to be interpreted via a collection of clauses that are given a fixed-point

interpretation, which can be further refined to correspond to the least fixed-point; the restriction to the

least-fixed point amounts to giving the clauses defining the predicate an inductive reading. Qualitatively,

LDµ is an extension of Tiu’s LD with inductive definitions. It can also be viewed as a fragment of the

logic G [7], which underlies the Abella proof assistant [3], that has been enriched with a more permissive

form for definitions. In the subsections below, we outline this logic, focusing mainly on the notions of

definitions and, more specifically, on how they extend what is permitted in G.

1The complete development of these ideas can be found at the URL https://z.umn.edu/strat-proofs.

https://z.umn.edu/strat-proofs
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2.1 Syntax

The terms of LDµ are based on the expressions in Church’s Simple Theory of Types, in which we assume

a finite set of base types ι1, . . . , ιn, function types α → β , and a distinguished type o of propositions. We

assume we are given a signature Σ, which is a set of type annotated constants of the form κ : τ . Terms

in LDµ are then the well-typed terms in the simply typed lambda calculus that are constructed using the

constants in the signature Σ and variables from a variable context X , which is a finite set of distinct type

annotated variables x : τ . Since a term t only exists with respect to a signature Σ and a variable context

X , and since Σ is fixed, we will say that t is well formed with respect to X , or that t lies over X . In

particular this means that X must contain all free variables in t, but may contain more. A term is ground

if it lies over the empty variable context /0. We denote the set of ground terms of type α by ground(α).
We observe that the type of t is uniquely determined by Σ and X , and thus we denote X ⊢Σ t : τ whenever

t lies over X . Finally, we note that terms are considered to be equal modulo α-, β -, and η-conversion

and we shall represent them by their normal forms modulo these rules, which are known to exist.

We call a type a first-order type if it does not contain o, and a predicate type if it is o or of the form

τ → ω for a first order type τ and a predicate type ω . If p : ω belongs to Σ for a predicate type ω , then

p is said to be a predicate constant or symbol. If ω is o, then p may also be referred to as a propositional

symbol. A formula is a term of type o. We assume that Σ contains the logical constants ⊥ and ⊤ of type

o, ∧, ∨, and ⊃ of type o → o → o and, for every first-order type α , ∀α and ∃α of type (α → o) → o.

Atomic formulas are of the form p~t for some predicate symbol p : ω in Σ where in general, u~t is an

abbreviation for the application (. . . (u t1) . . . tn). We abbreviate Qα(λx.C), where Qα is ∀α or ∃α , by

Qx : α .C. We will also follow the usual convention of writing ∧, ∨, and ⊃ in infix form in formulas in

which they appear as the top-level logical symbol.

Given variable contexts X and Y , a substitution θ = [t1/x1, . . . , tn/xn] of type Y →X is an assignment

of terms t1 : τ1, . . . , tn : τn lying over Y to each variable x1 : τ1, . . . ,xn : τn = X . Such a substitution is

said to be for X , and its range, denoted by range(θ), is the smallest variable context containing all the

free variables in t1, . . . , tn. Moreover, it is said to be an X -grounding substitution if Y is /0. If t is a term

lying over X , the application of θ to t, written as tθ , is the term (λx1 . . .λxn.t)~t; this is evidently a term

that lies over Y . Given a variable context X , we write [t/x]X to denote the simultaneous substitution

[x1/x1, . . . ,xn/xn, t/x] : X →X ,x, and we denote the trivial substitution by εX : X →X .

We assume a sequent style formulation of derivability for LDµ . In this context, a sequent is a judg-

ment of the form X ;Γ ⊢ C for a finite multiset of formulas Γ and a formula C all of which lie over a

finite variable context X . We will assume all the types in X are first order. We will omit the type an-

notations in X when their specific identity is orthogonal to the discussion. The formulas in Γ are called

the context or assumption set of the sequent, C is called its conclusion and the variables in X constitute

its eigenvariables. At an intuitive level, the judgment represented by such a sequent is valid if, for every

X -grounding substitution θ , the validity of all the formulas in Γθ implies the validity of Cθ .

2.2 Logical Rules

The main content of a sequent style presentation of a logic are the rules for deriving sequents. The rules

for LDµ are of three varieties: those that explicate the meaning of the logical symbols, those that deal

with the structural aspects of sequents, and those that build in the treatment of definitions. We discuss

rules of the first two kinds here, leaving the elaboration of definitions to the next two subsections.

The rules corresponding to the logical symbols are identical in content to the ones to be found in

usual first-order logics. We assume familiarity with the ones that build in the meanings of the logical
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X ;Γ,C[t/x]X ⊢ D X ⊢Σ t : τ

X ;Γ,∀x : τ .C ⊢ D
∀L

X ,x;Γ ⊢C

X ;Γ ⊢ ∀x : τ .C
∀R

X ,x;Γ,C ⊢ D

X ;Γ,∃x : τ .C ⊢ D
∃L

X ;Γ ⊢C[t/x]X X ⊢Σ t : τ

X ;Γ ⊢ ∃x : τ .C
∃R

Figure 1: Logical rules for quantifiers

X ;∆1 ⊢ A1 . . . X ;∆n ⊢ An X ;Γ,A1, . . . ,An ⊢C

X ;Γ,∆1, . . . ,∆n ⊢C
mc

X ;A ⊢ A
AX A atomic

Figure 2: The multicut and axiom rules

connectives. The quantifier rules are shown in Figure 1. Note that we write Γ,F in these rules to

denote a multiset that comprises F and the formulas in Γ. Note also that, in the rules in Figure 1, we

assume that the variable x bound by the quantifier to be distinct from all the variable in X , a requirement

that can always be established by renaming the bound variable. The structural rules include the usual

complement: contraction, which builds in the treatment of multisets as sets, weakening, which allows us

to add an extraneous assumption, an axiom rule which allows us to match an atomic conclusion with an

assumption set comprising just that formula, and the cut rule that underlies the use of lemmas. We use

a particular version of the cut rule called multicut that is better suited to cut-elimination and consistency

arguments. The axiom rule and the multicut rule are shown in Figure 2.

If an inference rule is a right introduction rule, all of its premises are called major premises. If it is a

left introduction rule or a multicut, then only those premises with the same consequent as its conclusion

are called major premises. All other premises are called minor premises.

2.3 Treating Predicate Constants as Defined Symbols

LDµ deviates from a vanilla first-order logic in that it allows atomic predicates to be further analyzed

through a definition D that parameterizes the logic. In this context, a definition is a set of clauses of the

form p~t
∆
=X B for which there exists a predicate constant p : ω in the signature Σ and a formula B, with

~t and B both lying over X . For a given clause H
∆
=X B, we say that H is the head of the clause, and B the

body. Similarly to [16], we require every variable in X to appear in H , and H to lie in the higher-order

pattern fragment that is described, e.g., in [12].

Definitions provide a natural means for encoding rule-based relational specifications in LDµ . For ex-

ample consider the specification of the append relation over lists that are constructed using the constants

nil, that represents the empty list, and cons, that represents the construction of a new list by adding an

element to an already existing list. A typical specification of this relation comprises the following rules:

append nil K K

append L K M

append (cons X L) K (cons X M)
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Such a specification can be rendered into a definition through the following clauses in LDµ :

append nil K K
∆
=K ⊤

append (cons X L) K (cons X M)
∆
=X ,L,K,M append L K M

(1)

Of course, such a rendition is useful only if it is supplemented with a means for reflecting the natural

style of reasoning associated with rule-based specifications into LDµ . There are, in general, two forms

in which the rules might be used in informal reasoning. First, they may be used to construct deriva-

tions for particular relations; for example, in this particular instance, they may be used to show that the

relation append (cons a nil) (cons b nil) (cons a (cons b nil)) holds for particular constants a and b.

Second, when we are given as an assumption that a particular relation holds, they can figure in a case

analysis style of reasoning. Thus, in this particular instance, they can be used to show that the formula

(append (cons a nil) nil nil)⊃⊥ must hold because there cannot be a derivation for its antecedent.

{range(θ);Γθ ,B′ ⊢Cθ | defn(H
∆
=X B,A,θ ,B′),H

∆
=X B ∈D}

Y;Γ,A ⊢C
∆L

Y;Γ ⊢ B′

Y;Γ ⊢ A
∆R defn(H

∆
=X B,A,εY ,B

′) for H
∆
=X B ∈ D

Figure 3: Definition rules for a predicate p, provided A = p~t

These two forms of reasoning are built into LDµ by rules for introducing atomic predicates into the

left and right of a sequent based on the definition D that parameterizes the logic. These rules are shown

in Figure 3. In these rules, we use the notation defn(H
∆
=X B,A,θ ,B′) to signify that there exists a

substitution ρ : Z →X , for some Z , such that Hρ = Aθ and B′ = Bρ Conceptually, ∆R corresponds to

unfolding a definition for a particular instance A of the head H , whereas ∆L corresponds to case analysis

on all possible instances of A matching with the head H . The reader may confirm that these rules can

actually be used to establish the two formulas considered above.

Not all definitions are permissible in LDµ . To explain what definitions are allowed, we must describe

a process for assigning an ordinal to each ground formula F that is called its level and is designated by

lvl(F). This process assumes an assignment for each ground atomic formula and extends it to arbitrary

formulas based on the following rules:

lvl(⊥) := lvl(⊤) := 0

lvl(A∧B) := lvl(A∨B) := max(lvl(A), lvl(B))

lvl(A ⊃ B) := max(lvl(A)+1, lvl(B))

lvl(∀x : α .C) := lvl(∃x : α .C) := sup{lvl(C[t/x] /0) | t ∈ ground(α)}

We then say that a definition D is ground stratified if there exists a level assignment to ground atomic

formulas such that for every clause H
∆
=X B ∈ D, and for every X -grounding substitution ρ , it is the

case that lvl(Hρ)≥ lvl(Bρ). The requirement of definitions in LDµ , then, is that they must be ground

stratified.

There is a stronger version of stratification that is also of interest and that we identify as strict strat-

ification. In this version, we require the definition to be ground stratified under a level assignment to
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ground atomic formulas that depends only on their predicate head. In other words it must be the case that

lvl(p~t1) = lvl(p ~t2) for any sequence of ground terms~t1 and ~t2. It is actually this less permissive version

of stratification that governs definitions in the logic G.

2.4 Inductive Definitions and Fixed-Point Operators

Definitions as we have considered them thus far may contain only one kind of clause: those of the form

H
∆
=X B. We now introduce the possibility of including a different kind of clause in definitions, ones

that are written as H
µ
=X B. We refer to these as inductive clauses in contrast to the previously described

ones that we distinguish as fixed-point clauses. The structural restrictions on inductive clauses parallel

those on fixed-point clauses: all the variables in X must appear in H and H must lie in the higher-order

pattern fragment. The predicate symbols in Σ are categorized as inductive or fixed-point predicates. The

definition that parameterizes the logic can be a mixture of the two kinds of clauses with the proviso that

the clauses defining an inductive predicate must all be of the inductive variety and, similarly, those for

the fixed-point predicates must be of the fixed-point variety.

Definitions in this mixed form must once again satisfy a stratification condition. The condition is,

in the first instance, similar to that described earlier: the definition must be ground stratified under a

level assignment to ground atomic formulas. This initial assignment is permitted to be arbitrary for

ground atomic formulas that have a fixed-point predicate as the top-level predicate symbol. However, the

requirement is stricter when the top-level predicate is an inductive one. In this case, the level assignment

must be independent of the arguments of the predicate, i.e., the conditions for strict stratification must be

satisfied in these cases.

The conceptual difference between fixed-point and inductive clauses is that the latter are intended

to identify a least fixed-point which thereby entails stronger properties for the predicate. At the proof-

theoretic level, this more refined view of the predicate definition is realized by a special introduction rule

for assumption formulas that have an inductively defined predicate as their top-level predicate symbol.

To present this rule we must first render a multi-clause definition of an inductive predicate p into a single

clause that has the form p~x
µ
=~x B p~x, where ~x is a sequence of distinct variables and B is a closed term

not containing p; B is referred to as a fixed-point operator in such a definition. This translation makes use

of a special predicate eq that is assumed to be defined by the sole clause eq X X
∆
=X ⊤. More specifically,

if the clauses for p are the following

p~t1
µ
=X1

B1 . . . p~tn
µ
=Xn

Bn

then the fixed-point operator in the single clause definition of p would be

λ p.λ~x.(∃X1.(eq x1 t1
1 )∧ . . .∧ (eq xk tk

1)∧B1)∨ . . .∨

(∃Xn.(eq x1 t1
n )∧ . . .∧ (eq xk tk

n)∧Bn)

where~ti = t1
i , . . . , t

k
i for each i, with t

j
i lying over Xi.

To provide a concrete example of this translation, we may consider the clauses shown in the display

labelled 1 that define the append predicate. Those clauses were originally shown to be of the fixed-

point variety, but we will now assume that their annotation and designation has been changed to that of

inductive clauses. Letting B be the fixed-point operator

λ p.λℓ.λk.λm.((eq ℓ nil)∧ (eq k m))∨

(∃x, ℓ′,m′.(eq ℓ (cons x ℓ′))∧ (eq m (cons x m′))∧ (p ℓ′ k m′)),



N. Guermond and G. Nadathur 7

this definition would be transformed into append L K M
µ
=L,K,M ((B append) L K M).

~x;B S~x ⊢ S~x X ;Γ,S~t ⊢C

X ;Γ, p~t ⊢C
µL

X ;Γ ⊢ B p~t

X ;Γ ⊢ p~t
µR

Figure 4: Rules for introducing p~t after converting the clauses for p into the form p~x
µ
=~x B p~x

Assuming the translation that we have just described, the rules for introducing atomic formulas that

have an inductively defined predicate as their top-level predicate symbol are shown in Figure 4. The

symbol S that appears in the left premise sequent in the µL rule is required to be instantiated with a

closed term of the same type as the predicate p. The particular term that is chosen for S in a use of this

rule is referred to as inductive invariant.

It is easily seen that the µR rule, i.e., the rule for introducing an inductively defined atomic formula

in the conclusion of a sequent, is no different from the rule for doing so when the formula is defined as

simple fixed-point. However, the µL rule adds deductive power to the calculus beyond what is avail-

able from just fixed-point definitions. To substantiate this observation, consider showing the following

statement, which establishes that append is a functional relation

∀ℓ,k,m,m′.(append ℓ k m)∧ (append ℓ k m′)⊃ (eq m m′).

This property cannot be proved if append is defined via clauses that are given just a fixed-point interpre-

tation. However, if we view the clauses for append as inductive ones instead, then the property can be

proved via the µL rule, using

λℓ.λk.λm.∀m′.(append ℓ k m)∧ (append ℓ k m′)⊃ (eq m m′)

as the inductive invariant.

3 Stratification and Consistency

In Section 2, we imposed some conditions on the forms of fixed-point and inductive definitions. In

particular, we required the first to be ground stratified and the second to be stratified based on just the

names of predicates. In this section, we discuss the purpose of these restrictions.

The need for some kind of stratification for the coherence of definitions should not be difficult to

appreciate. As an example of a definition that might be problematic, consider one that has p
∆
= p ⊃⊥ as

the sole clause for a propositional symbol p. A clause of this kind has the intuitive content of assuming

a definition of p in the course of constructing one for p. To understand this, consider how we might

proceed to prove p. We might unfold this by virtue of the definition into trying to prove p ⊃ ⊥, which

could be done by proving the sequent ·;p ⊢ ⊥. Since p appears as a hypothesis in this sequent, we are

effectively assuming that p is already a defined propositional symbol.

The intuitive observation above can be given actual substance by showing that the sequent ·; · ⊢ ⊥
can be derived if we allow p

∆
= p ⊃⊥ to be the sole clause for p in a definition; since there is a derivation

for any sequent in which ⊥ appears in the assumption set, it follows easily from this that a logic that

permits such a definition is inconsistent. The crux of the argument is to show that the sequent ·;p ⊢ ⊥
would have a derivation in this logic; from this it follows easily that ·; · ⊢ p ⊃ ⊥ and, therefore, ·; · ⊢ p
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have derivations and then, using the multicut rule, we may derive ·; · ⊢ ⊥. To see that ·;p ⊢ ⊥ has a

derivation, we observe that it would have one if ·;p,p ⊢ ⊥ is derivable. A derivation of the last sequent

is easily obtained by using the clause defining p with one of the two occurrences of p in the assumption

set of the sequent.

The ground stratification condition that we have described disallows clauses of the kind just discussed

in definitions. For such a clause to be allowable, we would need to be able to assign a level to p that

would have the property of being greater than or equal to the level of p ⊃ ⊥. However, the definition of

levels for formulas makes this impossible to do.

In the example considered, ground stratification boils down to a form of stratification that uses only

the predicate name; this is because the clause in question is for a predicate with no arguments. When

we consider predicates with arguments, the two notions become distinct. In such a case, we may “build”

the arguments of the predicate into its name. Of course, this is only possible for ground instances of

predicates, but that is sufficient for the coherence of the idea: specifically, we can identify the well-

formedness of a definitional clause with the ability to describe a stratification ordering on all its instances.

This is the idea that is reflected in ground stratification. As a concrete example, consider a definition that

is given by the following clauses:

ev z
∆
= ⊤ ev (s X)

∆
=X ev X ⊃⊥

In these clauses, z and s are to be understood to be constants of a designated type nat and X should

be read as a variable of type nat; intuitively, ev, which is a predicate of type nat → o, identifies the

even natural numbers, which are represented by terms constructed using the constant z (representing the

numeral 0) and the function symbol s (representing the successor function). Now, if we were to consider

an ordering of ground atomic formulas of the form ev t that “forgets” the argument, the displayed clauses

would not satisfy the stratification requirement. However, if we allow the chosen ordering to also take

into account the complexity of the argument, as would be the case if the measure associated with ev t

is based solely on the complexity of t as a term, then it is easily seen that the definition will satisfy the

required condition.

In the above example, the clauses for ev are assumed to provide a fixed-point definition for the

predicate. The requirements we have described in Section 2 do not allow them to be treated inductively:

for such an interpretation, the relevant definitional clauses must satisfy the stronger condition of being

stratified based on an ordering that uses only the predicate name for ground formulas of the form ev t.

A natural question to ask is if this requirement on inductive predicates can be weakened to allow the

ordering to depend on the arguments. What we observe below is that such a weakening is not possible

because it can render the logic inconsistent.

If we were to weaken the requirement in the way described, it would allow for the definition of the

predicate odd through the following clause:

odd (s X)
µ
=X odd X ⊃⊥

Recast into a form based on a fixed-point operator, this definition would correspond to one of the form

odd X
µ
=X ((B odd) X) where B is the term λ p.λx.∃y.(eq x (s y)∧ (p y ⊃ ⊥)). A crucial observation

about this operator is that does not impose the requirement that the predicate it applies to also holds of

s z, i.e., of the representation of the numeral 1. Given the definition of ev, it is therefore not surprising

that both λx.ev x and λx.(ev x ⊃ ⊥) describe fixed points by virtue of it. Concretely, it is easily seen

that if we pick S to be either of these predicates then the sequent x;B S x ⊢ S x is derivable. Using the

induction rule, it then follows that, for any term t, we can construct derivations for X ;odd t ⊢ ev t and

X ;odd t ⊢ ev t ⊃ ⊥ and therefore, by the multicut rule, a derivation for X ;odd t ⊢ ⊥. As particular
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instances of this observation, we see that the sequents ·;odd z ⊢ ⊥ and ·;odd (s z) ⊢ ⊥ have derivations.

The former implies that ·; · ⊢ odd z ⊃ ⊥ has a derivation and therefore, by the clause defining odd, that

·; · ⊢ odd (s z) has a derivation. Since both ·; · ⊢ odd (s z) and ·;odd (s z) ⊢⊥ have derivations, it follows

by the multicut rule that ·; · ⊢ ⊥ must also be derivable.

In the positive direction, the results in this paper show that the restrictions we have described suffice

to yield a consistent logic. These results strengthen those in [16] by adding a treatment of inductive

definitions to the logic. A question to ask is if the conditions on inductive clauses are not too restrictive

in practice. We argue not. In particular, we believe that the weaker form of stratification suffice for

general fixed-point definitions and that inductive reasoning can generally be based on definitions that

satisfy stronger conditions. In the present context, for example, inductive reasoning can be based on a

definition of a predicate that characterizes natural numbers—which is easily seen to be stratifiable under

an ordering for atomic formulas that uses only the predicate name—rather than the definitions of ev or

odd.

4 Applications for the More Permissive Form for Definitions

The main difference between the definitions permitted in LDµ and in G is in the use of ground strat-

ification as opposed to strict stratification to determine well-formedness. Several examples have been

presented in [16] to illustrate the benefits of the added richness. These examples have included the en-

coding of the Gödel-Gentzen translation and the Kolmogorov double negation translation of classical

logic in intuitionistic logic. Another important class of applications concerns the encoding of logical re-

lations, which are commonly used to reason about properties of programs and programming languages.

For example, using the more permissible form of definitions in LDµ , we can encode logical equivalence

of programs that asserts that two functions are equivalent if their behavior on equivalent arguments is the

same [9]. A more elaborate use of logical relations in this kind of reasoning may be found in [17], where

a step-indexed logical equivalence relation is used to prove correctness of compiler transformations for

functional programs. Although a different kind of extension to G, one based on adding rewriting and

using that to encode definitions [4], was used to validate this application, the use of ground stratifica-

tion provides an alternative justification that retains the flavor of definitions as originally described by

McDowell and Miller.

Another common use of logical relations is in the proof of strong normalizability results in the style

of Tait [14]. These arguments are based on the identification of reducibility relations [8], whose encoding

in a logic of definitions requires the idea of ground stratification. We will illustrate this application in

more detail below. We remark that logical relations arguments are frequently used in conjunction with

inductive arguments. We will therefore observe that the pitfall discussed in the previous section can be

avoided, since the logical relations in question need not be defined inductively.

We will specifically show how we can encode the reducibility predicate commonly used to prove

strong normalization for the simply typed lambda calculus (STLC) using ground stratification. To do

this, we introduce a base type ty to encode types in STLC, which may be constructed from the following

constant symbols

unit : ty arrow : ty → ty → ty

as well as a type tm to encode terms, which may be constructed from the following constant symbols

star : tm lam : (tm → tm)→ tm app : tm → tm → tm
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where star is the unique term of type unit. We then assume that we have already defined a predicate

step : tm → tm → o specifying a reduction relation on terms, which we use to inductively define the

strong normalizability predicate sn : tm → o as follows

sn T
µ
= ∀u : tm.(step T u ⊃ sn u)

Using this, we can now define the reducibility predicate red : ty → tm → o as follows

red unit T
∆
= sn T

red (arrow A B) T
∆
= ∀u : tm.(red A u ⊃ red B (app T u))

Note that this predicate cannot be strictly stratified because red appears negatively in the body of its

definition. However, we notice that in the instance red A u appearing negatively in the body, the type

argument A is a subterm of the type argument (arrow A B) appearing in the head of the definition. But

if we think of red as being a definition indexed by its first type argument, then we can think of red A

as having already been defined when red (arrow A B) is being defined, suggesting the definition be

acceptable. Indeed, this definition is ground stratified because for any ground terms a and b of type ty,

the term a is strictly smaller than the term (arrow a b), and thus our definition is valid.

One may wonder whether this definition suffices for the usual reducibility argument to go through.

Indeed, it had been assumed in a previous development that it was safe to do induction directly on

the reducibility predicate [1], which violates the strict stratification condition we have now imposed

on inductive definitions. The usual argument (see eg. [8]), however, depends on induction on the type

argument, and not on reducibility itself. We can therefore model this mode of reasoning by defining a

predicate type : ty → o inductively as follows

type unit
µ
=⊤

type (arrow A B)
µ
= (type A)∧ (type B)

and then proceed by induction on the type, rather than on reducibility. We note that the type predicate

does not appear negatively in the body of these clauses and hence these clauses satisfy the stratification

condition under a level assignment in which the level of an atomic predicate of the form (type t) is

determined solely by the constant type.

5 Proving Consistency for the Logic

In this section, we sketch the proof of consistency for the logic LDµ . The most common method for

doing this is to show that there cannot be a derivation for ⊥ in the logic. In a sequent style formulation,

it is usually easy to show this if proofs are limited to those that do not use the cut rule. Thus, a cut-

elimination result for the logic comes in handy. However, as with the logic LD described by Tiu, a proof

of cut-elimination for LDµ has been elusive. Following Tiu, we therefore use an indirect technique. We

first describe a ground logic LDµ
∞ through a sequent calculus that follows the structure of the one for

LDµ except that it is specialized to proving ground sequents. We then show that cut-elimination holds

for LDµ
∞ and use this to conclude that there is no derivation for ⊥ in this logic. Finally, we produce an

interpretation of LDµ into LDµ
∞, which allows us to conclude that there cannot be a derivation for ⊥ in

LDµ either. The subsections below elaborate on these three steps in the proof.
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{Γ ⊢C[t/x] /0}t∈ground(α)

Γ ⊢ ∀x : α .C
∀R

{Γ,B[t/x] /0 ⊢C}t∈ground(α)

Γ,∃x : α .B ⊢C
∃L

Figure 5: ∀R and ∃L rules in LDµ
∞

5.1 The Ground Logic

We now define a ground version of LDµ which we call LDµ
∞. The formulas in LDµ

∞ are the formulas in

LDµ which are well formed over the empty variable context. Since all formulas are ground, we restrict

the sequent X ;Γ ⊢C to have no eigenvariables, which translates to requiring that X = /0. We therefore

denote a ground sequent by Γ ⊢ C. The rules of LDµ
∞ are the same as those of LDµ except for ∀R, ∃L,

and µL. We replace the ∀R and ∃L rules with the ground infinitary rules in Figure 5.

{Γ,B′ ⊢C | defn(H
∆
=X B,A,ε /0,B

′)}

Γ,A ⊢C
∆L

Γ ⊢ B′

Γ ⊢ A
∆R defn(H

∆
=X B,A,ε /0,B

′)

Figure 6: Definition rules in LDµ
∞ for a predicate p, provided A = p~t

The definition ∆L and ∆R rules in LDµ
∞ are the same as those of LDµ . The restriction to ground

sequents allows us to present these rules as shown in Figure 6. However, we must check that these rules

are well-formed, which amounts to checking that the premises are well-formed over the empty variable

context. In other words, assuming that the conclusion of the rule is ground, we must check that all

the formulas in each of the premises are ground. Suppose we are given a ground context Γ, a ground

formula A, and a clause H
∆
=X B such that defn(H

∆
=X B,A,ε /0,B

′), then there exists ρ : Z → X such

that A = Aε = Hρ and Bρ = B′. Since H lies in the higher-order pattern fragment and A is ground, this

implies that ρ is unique and furthermore that it must be ground. Since B lies over X , which is the domain

of ρ , it follows that B′ must be ground, as desired.

{

B S~t ⊢ S~t
}

~t∈ground(~α)
Γ,S ~u ⊢C

Γ, p~u ⊢C
µL

Figure 7: µL rule in LDµ
∞ for p~x

µ
=~x B p~x and inductive invariant S

Finally, for any inductive definition with fixed-point form p~x
µ
=~x B p~x and inductive invariant S, we

introduce a ground infinitary version of the µL rule given in Figure 7.

5.2 Consistency of the Ground Logic

We now show that LDµ
∞ is consistent by proving the cut-elimination theorem for ground derivations.

To do so, we first define a reduction relation, which specifies how the multicut rule may be propagated

upwards in a derivation tree. Then, we introduce the notion of normalizable derivations, which allows
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us to show that the cut reduction relation is well-founded, and from which we can establish the cut-

elimination theorem. To prove that every derivation is normalizable, we require the intermediate notion

of a reducible derivation. Every derivation is then shown to be reducible via the reducibility technique,

inspired by Tait and Martin-Löf (see [10, 14]), and adapted to the current context by McDowell and

Miller in [11]. Our proof closely follows that of [16] and [11], together with the treatment of induction

from [13, 15]. We outline the essential aspects of these steps below.

5.2.1 Cut reductions

We specify the reduction relation between derivations, following closely the reduction relation in [11].

The redex, that is the derivation to be reduced, is always a derivation Ξ ending with the multicut rule

Π1

∆1 ⊢ B1
· · ·

Πn

∆n ⊢ Bn

Π

B1, . . . ,Bn,Γ ⊢C

∆1, . . . ,∆n,Γ ⊢C
mc

We refer to the formulas B1, . . . ,Bn in the multicut as cut formulas. If a left or right rule introduces a cut

formula, we say the rule is principal. If Π reduces to Π′, we say that Π′ is a reduct of Π.

The reduction relation relates a derivation Ξ ending with the multicut rule to a new derivation Ξ′

which may again end with a multicut but is always of smaller complexity. The reduction relation is

specified by case analysis on the last rule of Π. If Π is principal, then we group the reductions by case

analysis on the derivation Πi ending with the cut formula. These are essential cases whenever Πi is also

principal (but not µR), left-commutative cases whenever Πi is not principal, inductive cases whenever

Π ends with µL, structural cases whenever Π ends with a weakening or contraction, left axiom cases

whenever Πi is an axiom, and left multicut case whenever Πi ends with a multicut. Otherwise, Π is either

an axiom (right axiom case), ends with a multicut (right multicut case), or ends with a non-principal rule

(right-commutative cases). We describe the inductive case in more detail below. The full reduction

relation is presented in a longer version of this paper.

Inductive case: An inductive case occurs when Π ends with µL introducing the cut formula p ~t for

an inductive definition in fixed-point form p ~x
µ
=~x B p ~x. Suppose the cut formula being introduced is

B1 = p~t. In this case, Π1 is a derivation of the sequent ∆1 ⊢ p~t and Π is the following derivation for

some inductive invariant S

{

Π~u
S

B S~u ⊢ S ~u

}

~u∈ground(~α)

Π′

S~t,B2, . . . ,Bn,Γ ⊢C

p~t,B2, . . . ,Bn,Γ ⊢C
µL

The key idea is that since we know that S is an inductive invariant, or pre-fixed-point of B, and p is a least

fixed-point of B, then any time p~t is provable in some context, S~t should also be provable in the same

context. More specifically, the family of derivations {Π~u
S}~u, which we abbreviate by ΠS, may be used to

obtain a derivation of ∆1 ⊢ S~t. We call this derivation the unfolding of the derivation Π1 with respect to

the family ΠS, which is captured in the following lemma, and which we denote by µ(Π1,ΠS).

Lemma 1 (Unfolding lemma). Suppose p ~x
µ
= B p ~x is the fixed-point form of an inductive definition,

then for any derivation Ψ of ∆ ⊢ D p where p does not occur in D and occurs only positively in D p (i.e.,

does not occur to the left of an implication), there exists a derivation µ(Ψ,ΠS) of ∆ ⊢ D S.
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The proof of this lemma depends crucially on the inductive definition p to be strictly stratified. Using

the unfolding operation, we can now reduce the redex Ξ above to the following

µ(Π1,ΠS)
∆1 ⊢ S~t

. . .
Π′

S~t,B2, . . . ,Bn,Γ ⊢C

∆1, . . . ,∆n,Γ ⊢C
mc

5.2.2 Cut Elimination

Our aim is now to show how the cut reduction relation is well-founded, and can therefore be used to

eliminate cuts from a derivation. We start with the following inductive definition, by which we mean the

smallest set of derivations closed under the specified operation (see definition 1.1.1 in [2] for a precise

definition).

Definition 1 (normalizability). The set of normalizable derivations in LDµ
∞ is inductively defined as

follows:

1. if Π ends with a multicut, then Π is normalizable if every reduct Π′ is normalizable

2. otherwise, Π is normalizable if each of its premise derivations is normalizable.

The goal is to show that every derivation in LDµ
∞ is normalizable. To do this we need the intermediate

notion of γ-reducibility, which is defined by transfinite recursion on the level γ of a derivation, which we

recall is an ordinal. The level of a derivation of a ground sequent Γ ⊢ C is defined to be lvl(C). Note

therefore that if Π reduces to Π′, then lvl(Π) = lvl(Π′). Furthermore, note that levels are defined so that

every rule has a non-increasing consequent in each of its major premises. In the case of the ∆R and µR
rules, this condition is guaranteed by the ground stratification condition. In the case of ∆L, this condition

is guaranteed because the consequent is ground. Finally we note that below, γ-reducibility of a derivation

ending with the ⊃R rule depends on α-reducibility to already be defined for any α < γ . Together, these

observations guarantee that the following is well defined.

Definition 2 (reducibility). Define γ-reducibility of a derivation Π inductively as follows:

1. if Π ends with a multicut, then Π is γ-reducible if for every reduct Π′, Π′ is γ-reducible.

2. if Π is the derivation

Π′

Γ,A ⊢ B

Γ ⊢ A ⊃ B
⊃R

,

then Π is γ-reducible if lvl(Π) ≤ γ , Π′ is γ-reducible, and for every α-reducible
ϒ

∆ ⊢ A
where

α = lvl(A), the derivation mc(ϒ,Π′) is γ-reducible.

3. if Π ends with any other rule, Π is γ-reducible if each of its major premise derivations is γ-

reducible, and each of its minor premise derivations is normalizable.

We say a derivation Π is reducible if there exists a γ such that Π is γ-reducible. The lemma below

asserts that reducibility implies normalizability. Since reducibility is a strengthening of normalizability,

it is shown by straightforward induction on the γ-reducibility of a derivation.

Lemma 2 (Normalization Lemma). If Ξ is γ-reducible then Ξ is normalizable.

The key lemma needed to prove normalizability of derivations in LDµ
∞ is the following
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Lemma 3 (Reducibility Lemma). Given n derivations Π1, . . . ,Πn such that Πi is γi-reducible, and any

derivation Π the multicut

Π1

∆1 ⊢ B1
. . .

Πn

∆n ⊢ Bn

Π

Γ,B1, . . . ,Bn ⊢C

∆1, . . . ,∆n,Γ ⊢C
mc

which we denote by Ξ, is reducible.

Following [15], the proof is by induction on (1) the number of occurrences of µL in Π, then by

subordinate induction on (2) the height of Π, then on (3) the number of cut formulas n, and finally on (4)

the γi-reducibility of each derivation Πi.

We now proceed to show how the multicut rule may be eliminated from any LDµ
∞ derivation.

Corollary 1. Every derivation Π in LDµ
∞ is reducible.

Proof. Consider the nullary multicut mc(Π), which is reducible by Lemma 3. Since mc(Π) reduces to

Π it follows that Π is reducible.

Lemma 4 (Normal form lemma). If a derivation Π of a sequent Γ ⊢C is normalizable, then there exists

a cut-free derivation Π̂ of Γ ⊢C, which we call a normal form for Π.

Since every derivation in LDµ
∞ is reducible by Corollary 1, reducibility implies normalizability by

Lemma 2, and a normalizable derivation has a cut-free normal form by the previous lemma, we obtain

our main theorem

Theorem 1 (Cut admissibility for LDµ
∞). Every derivation of a ground sequent Γ ⊢ C in LDµ

∞ admits a

cut-free derivation of the same sequent.

We now obtain the following important consequence of the cut elimination theorem.

Corollary 2 (Consistency of LDµ
∞). LDµ

∞ is consistent.

Proof. It suffices to notice by case analysis that there are no cut-free derivations of ⊢ ⊥. Since every

derivation has a cut-free normal form by Theorem 1, ⊢ ⊥ is not derivable in LDµ
∞.

5.3 Consistency of the Full Logic

The goal is now to define an interpretation of LDµ in LDµ
∞, which will relate the derivability of a sequent

in LDµ to the derivability of a ground sequent in LDµ
∞. This will allow us to reduce the consistency of

the former to that of the latter. The interpretation is specified by the following lemma.

Lemma 5 (Grounding Lemma). If Y;Γ ⊢C is derivable in LDµ , then for any Y-grounding substitution

δ : /0 →Y , the ground sequent Γδ ⊢Cδ is derivable in LDµ
∞.

Proof. The proof is by induction on the height of the derivation of Y;Γ ⊢C, and by case analysis on the

last rule of the derivation. We only show the case where the derivation ends with ∆L below.

Case ∆L: Suppose the derivation ends with ∆L on the atom A where Γ = Γ′,A. It is clear that if

defn(H
∆
=X B,Aδ ,ε /0,B

′), then defn(H
∆
=X B,A,δ ,B′), and furthermore that range(δ ) = /0 since δ is
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a ground substitution. Thus a ground derivation of a premise Γ′δ ,B′ ⊢Cδ below is obtained by applying

the induction hypothesis to the ground premise ·;Γ′δ ,B′ ⊢Cδ with the empty grounding substitution.

{range(θ);Γ′θ ,B′ ⊢Cθ | defn(H
∆
=X B,A,θ ,B′)}

Y;Γ′,A ⊢C
∆L

 

{Γ′δ ,B′ ⊢Cδ | defn(H
∆
=X B,Aδ ,ε /0,B

′)}

Γ′δ ,Aδ ⊢Cδ
∆L

The effect of the interpretation on a derivation is therefore to prune branches from the ∆L rule.

As a result of the grounding lemma, we obtain the following

Lemma 6 (Interpretation lemma). If LDµ
∞ is consistent, then so is LDµ .

Proof. From grounding lemma, if ⊢ ⊥ is derivable in LDµ , then it is also derivable in LDµ
∞. Thus, the

contrapositive also holds: If ⊢ ⊥ is not derivable in LDµ
∞, then it is not derivable in LDµ .

The interpretation lemma in conjunction with the consistency of LDµ
∞ (Corollary 2) allow us to obtain

Corollary 3 (Consistency of LDµ ). LDµ is consistent.

6 Conclusion

In this paper, we have shown how to accommodate inductive definitions in a logic that permits a more

permissive form of fixed-point definitions. We have observed that the provision of inductive definitions

must be done with some care in order to ensure consistency. We have also seen how the resulting logic

allows us to encode arguments based on logical relations that are often used in formulating and proving

properties about programs and programming languages. This work represents an intermediate step to-

wards building a more flexible form for definitions into the logic underlying the Abella proof assistant.

That logic additionally includes co-induction, generic quantification, and a notion called nominal ab-

straction which provides a means for analyzing occurrences of objects in expressions that are governed

by generic quantifiers. In a longer version of this paper, we have shown that the greater flexibility in

fixed-point definitions can be supported even in the presence of generic quantification. The extension of

these results to include the remaining features of the logic is the subject of ongoing work.

The work that we have described builds on that of Tiu. Another effort that has a related flavor is that of

Baelde and Nadathur [4]. That effort resulted in the development of a natural deduction calculus called

µNJ, which extends deduction modulo [6] with inductive and co-inductive definitions. This calculus

allows fixed-point definitions to be constructed with a flexibility that overlaps significantly with what is

supported by ground stratification, with the difference that such definitions are realized through rewrite

rules. An important aspect of µNJ is an equality elimination rule that builds in the ability to generalize

equality assumptions, which then allows substitutions into proofs to be defined in a way that maintains

their original structure. This feature has been exploited in showing strong normalizability for µNJ,

thereby verifying its consistency. While µNJ includes a treatment of co-induction, it does not support

generic quantification and nominal abstraction. We believe that the approach underlying this paper may

be a preferred way to provide for the richer form of definitions because it does not permit rewrite rules

that can modify the meaning of equality. However, there are insights to be gained from the formulation
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of equality elimination in µNJ in developing a calculus close to LDµ that also includes the additional

features of interest and for when we can prove a cut elimination result.

We would like to extend this work in the future in a few ways in addition to including the features

mentioned in the logic. First, we would like to build greater flexibility into the treatment of induction.

Currently, inductive clauses do not allow the predicate being defined to appear to the left of an implication

in the body. However, we believe that this requirement can be weakened to prohibit such occurrences

only in truly negative positions. Second, perhaps taking the cue from µNJ, we would like to develop a

non-ground calculus close to LDµ for which we can prove a cut-elimination result. Finally, in a much

more ambitious direction, we would like to add a higher order quantification capability to logics of

definition. This would on the one hand allow for greater modularity in definitions, statements of theorems

and their proofs, and may, on the other hand, allow for the statement and proofs of stronger results such

as strong normalizability for System F [8].
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