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Logical Frameworks such as Automath [de Bruijn, 1968] or LF [Harper et al., 1993] were originally
conceived as metalanguages for the specification of foundationally uncommitted deductive systems,
yielding generic proof checkers. Their high level of abstraction was soon exploited to also express
algorithms over deductive systems such as theorem provers, type-checkers, evaluators, compilers,
proof transformers, etc. in the paradigm of computation-as-proof-construction. This has been real-
ized in languages such as λProlog [Miller et al., 1991] or Elf [Pfenning, 1991] based on backward
chaining, and LolliMon [López et al., 2005] or Celf [Schack-Nielsen and Schürmann, 2008], which
integrated forward chaining.

None of these early frameworks supported the direct expression of infinitary objects or proofs,
which are available in the recently developed CoLFω [Chen, 2023]. In this work-in-progress report,
we sketch an approach to computation-as-proof-construction over the first-order fragment of CoLFω

(called CoLFω
1 ) that already includes infinitary objects and proofs. A key idea is the interpretation of

logic variables as communication channels and computation as concurrent message-passing. This is
realized in a concrete compiler from CoLFω

1 to Sax, a proof-theoretically inspired parallel program-
ming language based on the proof-reduction in the semi-axiomatic sequent calculus [DeYoung et al.,
2020].

1 Introduction

Consider the set of natural numbers inductively generated by symbols s and z. The following two rules
define the addition operation on natural numbers.

add z A A
add_z

add A B C

add(s A) B(s C)
add_s

The adequacy of representation dictates that a derivation of add A B C exists if and only if A+B =
C. We can represent both the natural numbers and the addition relation in LF as follows.

nat: type.
z : nat.
s : nat -> nat.

add: nat -> nat -> nat -> type. %mode add + + -.
add_z : add z A A.
add_s : add A B C -> add (s A) B (s C).

The computational interpretation of this signature in Twelf proceeds by searching for a derivation of
of add A B C, given A and B. Mode checking guarantees that if the first two arguments are ground and
proof search succeeds, then the third argument will also be ground. In this example, there is a unique
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C such that the relation add A B C holds, but in general proof search may backtrack and thereby either
fail to terminate or enumerate multiple solutions.

Backward-chaining proof search in this style presents multiple difficulties in the infinitary settings
of CoLFω . One is termination if the inputs are infinitary. Infinitary objects also interact poorly with
backtracking because we may never definitively fail. Related is a problem with unification, which is
guaranteed to terminate only over rational (that is, circular) terms, while in many applications either
objects or proofs are not rational in this sense.

What we would like is a dynamics where outputs are computed incrementally from inputs, evoking
the image of transducers between streams (even if terms generally have the shape of potentially infinite
trees, not just streams).

In order to avoid backtracking, we use mode and uniqueness checking to statically enforce that there
will be at most one proof for each unique input. As a (perhaps surprising) consequence we can then
exploit and-parallelism between multiple premises, reducing synchronization between them to commu-
nication between shared variables.

For example, consider the following program that computes the product of two conatural numbers
(that is, potentially infinite numbers). We continue to use s and z as constructors. Note that both add
and mult are cotypes, because we want to allow infinitary derivations for addition and multiplication.

conat: cotype.
z : conat.
s : conat -> conat.

add: conat -> conat -> conat -> cotype. %mode add + + -.
add_z : add z A A.
add_s : add A B C -> add (s A) B (s C).

mult : conat -> conat -> conat -> cotype. %mode mult + + -.
mult_z : mult z A z.
mult_s : mult A B C -> add B C D -> mult (s A) B D.

Here, the two premises mult A B C and add B C D can be evaluated in parallel, with some inter-
esting flow of information. For example, in a lazy setting, where the output D is revealed step by step, we
don’t need to evaluate mult A B C for the first B steps since C remains unchanged.

In summary, we explore a logic programming language based on CoLFω
1 where proofs are repre-

sented as infinitary terms, proof construction does not backtrack, and premises of rules are evaluated in
parallel using shared logic variables for communication. In the rest of this paper, we give definitions of
streams and stream transducers, and explain their operational semantics.

2 Simple Examples

We give an overview of the intended meaning of CoLF logic programs through examples. The examples
we primarily consider are streams of conatural numbers. The current semantics of CoLF handles only
the coinductive fragment, contrary to the mixed inductive and coinductive case [Chen, 2023, 2021].

The data signature is given below, where s and z are the constructors of conatural numbers, and cons
is the only constructor for streams.

conat: cotype.
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z: conat.
s: conat -> conat.

stream: cotype.
cons: conat -> stream -> stream.

We may use notational definitions to define several streams. Notational definitions are elaborated into
relations during compilation. We define repeat n to be the stream that repeats the number n infinitely,
and up n to be the stream that counts up from n. Notice that the syntax for the above definitions follows
that of Twelf [Pfenning and Schürmann, 1998], where λ -abstractions are written using square brackets.

repeat : conat -> stream = [N] cons N (repeat N).
up : conat -> stream = [N] cons N (up (s N)).

The definition of repeat is that repeat n is cons n (repeat n), a stream whose head is n and
whose tail is the same stream. The definition of up is that up n is cons n (up (s n)), a stream whose
head is n and whose tail is the stream that counts up from s n. The above two definitions are equivalent
to the following relational definitions. The compiler performs this translation automatically as part of the
compilation process. We leave the universal quantification of the free variables (in uppercase) implicit.

repeat : conat -> stream -> cotype. %mode repeat + -.
repeat_def : repeat N R -> repeat N (cons N R).

up : conat -> stream -> cotype. %mode up + -.
up_def : up (s N) U -> up N (cons N U).

We can also view the relation as the following rules for constructing infinitary proofs.

repeat N R

repeat N(cons N R)
(repeat_def)

up(s N) U

up N(cons N U)
(up_def)

The rules mimic the recursive definitions: an infinitary proof expansion of repeat N R will equate
R with cons N (cons N (cons N ...)), and an infinitary proof expansion of up N U will equate U
with cons N (cons (s N) (cons (s (s N)) ...)). We show a partial expansion below.

repeat N . . .

repeat N(cons N . . .)

repeat N(cons N(cons N . . .))

repeat N(cons N(cons N(cons N . . .)))

up(s(s(s N))) . . .

up(s(s N))(cons(s(s N)) . . .)

up(s N)(cons(s N)(cons(s(s N)) . . .))

up N(cons N(cons(s N)(cons(s(s N)) . . .)))

In fact, we are able to run this program in our implementation by providing a main function. For
example, we may be interested in seeing the evaluating up z and we may write a main definition (or
relation) as follows.

main : stream = up z.

The main function may also be defined as a relation. This process is automatically carried out by the
compiler.

main : stream -> cotype. %mode main -.
main_def : up z U -> main U.
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The compiler will then compile and perform infinitary proof expansion. It will stop after the result
is ground up to a predetermined depth. Here is the result from the compiler, where ... indicates a term
that has not been computed yet.

(cons z
(cons (s z)
(cons (s (s z))
(cons (s (s (s z)))
(cons (s (s (s (s z)))) ...)))))

For space reasons, we truncated the output above. The effect of computing up to a certain term depth
is more prominent when we compute the infinite stream of natural number ω as follows.

omega : conat = s omega.
main : stream = repeat omega.

Notice here that the argument to repeat is also defined recursively, and the compiler correctly elab-
orates them into definitions.

omega : conat -> cotype. %mode omega -.
omega_def : omega O -> omega (s O).
main : stream -> cotype. %mode main -.
main_def : omega O -> repeat O R -> main R.

Here, something interesting happens in the definition of main. Since omega O and repeat O R are
two separate premises, they may be evaluated in parallel. Moreover, although semantically omega O is
outputting a stream O to be read by repeat O R, since repeat is a recursive definition that does not
look at the structure of its first argument, there is no strict evaluation order on whether repeat or omega
should be evaluated first.

Running the interpreter, we get the following stream as the result. In this case, the stream is computed
up to depth 5, and we can see that the first element is computed up to depth 4, the second element is
computed up to depth 3, and etc.

(cons (s (s (s (s ...))))
(cons (s (s (s ...)))
(cons (s (s ...))
(cons (s ...)
(cons ...)))))

3 More Complex Relations

We now turn to more complex relations that include case analysis on input arguments to a relation.
As in the LF logical framework, term abstractions cannot perform a case analysis on their arguments

but may only use them “parametrically”. To analyze the input arguments, we need to define a relation
and provide different branches for each input argument case.

For example, consider the following addition relation defined on conatural numbers. The rules should
be straightforward as we have seen these for several times so far.

add: conat -> conat -> conat -> cotype. %mode add + + -.
add_z : add z A A.
add_s : add A B C -> add (s A) B (s C).
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The core question is: what does this program mean computationally?
Rather than giving a full formal semantics, we explain informally the program behavior of add X Y Z.

The idea is to treat each argument as a channel of communication. The mode declaration specifies
whether channels are inputs (mode +) or outputs (mode −). For instance, the program add X Y Z oper-
ates on two input channels X and Y, and one output channel Z. The behavior of the program is specified
by the clauses, directly modeling infinitary proof construction.

The first clause add_z states that the program add X Y Z reads the first input channel X, and if the
value read is z, the program forwards the input channel Y to output channel Z.

The second clause add_s states that the program add X Y Z reads the first input channel X. If the
value read is s A, for some input channel A, the program allocates a fresh channel C, and writes to the
output channel Z the value s C, then we continue as the program add A Y C.

The proposed informal semantics has the following properties:

1. The program operates on list of input channels and a single output channel

2. At each step, the program consists of interacting processes that may perform one of the following
actions:

(a) Read a value from an input channel

(b) Write a value to an output channel

(c) Forward an input channel to an output channel

(d) (During writing) Allocate fresh channels

(e) Spawn a new process (see stream processor example below)

(f) Continue as some process

3. No backtracking (see below)

The property of no backtracking states that at each program point, the process has at most one pos-
sible action. In other words, the clauses for a relation have to agree on the action taken at each step. In
the case of add above, we see that the first action in both clauses should be to read from the first input
channel X. Then, based on different values of X, each clause may take different actions. The compiler
checks uniqueness during compilation, and signals an error if more than one action is possible at some
program point.

We now define the pointwise addition of two streams.

add_stream: stream -> stream -> stream -> cotype. %mode add_stream + + -.
add_stream_def : add A B C -> add_stream R S T ->

add_stream (cons A R) (cons B S) (cons C T).

The clause add_stream_def states that the program add_stream X Y Z will carry out the follow-
ing actions in order:

1. Read from the first input channel X a stream cons A R.

2. Read from the second input channel Y a stream cons B S.

3. Allocate a fresh channel C, and spawn a new process add A B C.

4. Allocate a fresh channel T, and spawn a new process add_stream R S T.

5. Write to the output channel Z the value cons C T.
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There are two things to notice here. First, we dictate that the program read the first input channel X
before reading the second input channel Y. Strictly speaking, this is not necessary in this case, but when
we get to the case of multiple clauses, this is needed because we would like to ensure unique decision at
every program point. Second, steps (3) (4) and (5) can happen simultaneously, given that fresh channels
C and T are allocated. However, due to the fact that we do not allow backtracking, we still ensure a
sequential order of actions where the spawned processes can execute in parallel with the main process.

With the help of stream addition, as an example, we may define the stream of even numbers by
adding together two streams that count up from 0. Note here that even cannot be a constant definition
but has to be a relation, because stream_add needs to analyze its arguments.

even : stream -> cotype. %mode even -.
even_def : add_stream (up z) (up z) E -> even E.

We may evaluate the even predicate through a main relation. Since even is a relation, main also
needs to be a relation, not a constant definition.

main : stream -> cotype. %mode main -.
main_def : even E -> main E.

And we get the expected result when executing the program.

(cons z
(cons (s (s z))
(cons (s (s (s (s z))))
(cons (s (s (s (s (s (s z))))))
(cons (s (s (s (s (s (s ...)))))) ...)))))

In a similar way, we may define the Fibbonacci stream by beginning with 0 and 1, and then adding
the stream with its tail.

tail : stream -> stream -> cotype. %mode tail + -.
tail_def : tail (cons N F) F.

fib : stream -> cotype. %mode fib -.
fib_def : fib F -> tail F G ->

add_stream F G H -> fib (cons z (cons (s z) H)).

main : stream -> cotype. %mode main -.
main_def : fib F -> main F.

Here, the channel represented by variable F is an output if fib and an input to two other processes
(tail and add_stream).

We can test this program by running the interpreter.

(cons z
(cons (s z)
(cons (s z)
(cons (s (s z))
(cons (s (s (s z)))
(cons (s (s (s (s (s z)))))
(cons (s (s (s (s (s (s (s (s z)))))))) ...)))))))
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Another interesting operation we can define is the integration operation (inspired by Budiu et al.
[2024]), which calculates the cumulative sum of a stream. Integration is done by taking a sum of the
stream with the shifted output.

integrate : stream -> stream -> cotype. %mode integrate +A -B.
integrate/def : integrate D B -> add_stream (cons z B) D R -> integrate D R.

We can check that integrating the stream that counts up from 0 gives the stream 0,1,3,6,10....

main : stream -> cotype. %mode main -.
main_def : integrate (up z) G -> main G.

(cons z
(cons (s z)
(cons (s (s (s z)))
(cons (s (s (s (s (s (s z))))))
(cons (s (s (s (s (s (s (s (s (s (s z)))))))))) ...)))))

4 Conclusion

We have sketched an interpreter for CoLFω
1 . It statically performs mode checking and uniqueness check-

ing and then executes the program concurrently, initially with a single process with just one output
channel. During this execution it also constructs a partial proof object using the constructors naming the
rules. When new processes are spawned, each is responsible for sending along a single output channel
while receiving from possibly several input channels. This matches the computational model of Sax
under its message-passing interpretation [DeYoung et al., 2020, Pfenning and Pruiksma, 2023]. Our
implementation therefore generates Sax code from the CoLFω

1 source and then evaluates it to a certain
depth.

The first-order kinds are interpreted as data types, and the clauses of first-order kinds are interpreted
as data constructors. The higher-order kinds are interpreted as relations, which are seen as logic pro-
gramming recipes for constructing outputs from inputs with mode specifications. Clauses of relations
are interpreted as concrete steps on how to read inputs and write outputs. Premises of a clause become
concurrently executing subprocesses, and recursive definitions are seen as a special instance of relations.

Besides a formal description of compilation which is beyond the scope of this work-in-progress
report, our preliminary investigations leave room for multiple generalizations towards full CoLFω , such
as higher-order terms, dependently typed terms (not just at the level of proof objects), and the mix of
inductive and coinductive types. We are encouraged by experiments with our preliminary compiler and
the strong proof-theoretic foundations for both CoLFω and Sax.
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