
Chaudhuri, Nantes-Sobrinho (Eds.): International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2025)
EPTCS ??, 2025, pp. 1–17, doi:10.4204/EPTCS.??.??© S. Urciuoli

This work is licensed under the
Creative Commons Attribution License.

On the Formal Metatheory of the Pure Type Systems using
One-sorted Variable Names and Multiple Substitutions*

Sebastián Urciuoli
Universidad ORT Uruguay, Uruguay

urciuoli@ort.edu.uy

We develop formal theories of conversion for Church-style lambda-terms with Pi-types in first-order
syntax using one-sorted variables names and Stoughton’s multiple substitutions. We then formal-
ize the Pure Type Systems along some fundamental metatheoretic properties: weakening, syntactic
validity, closure under alpha-conversion and substitution. The whole development has been machine-
checked using the Agda system. We compare our formalization with others related. Our work
demonstrates that the mechanization of dependent type theory by using conventional syntax and
without identifying alpha-convertible lambda-terms is feasible.

1 Introduction

In [26], Tasistro et al. developed a framework in Agda [22] containing Stoughton’s theories of substitu-
tion and α-conversion [25] for the pure λ -calculus in its conventional syntax, i.e., first-order with only
one sort of names to serve for both free and bound variables. Their prime motivation was to test whether
such concrete approach was in any way amenable to full formalization.

The use of Stoughton’s simultaneous substitutions brings about the possibility to define a capture-
avoiding and structurally recursive substitution operation by renaming the bound variables at the same
time the operation is taking place. In contrast, the classical formal definition for the unary substitution,
e.g., by Curry-Feys [11] and Hindley-Seldin [15], is non-structural because, in the case of λ -abstractions,
it invokes itself twice, once to rename the bound name, and again to perform the actual substitution; the
latter is on a λ -term that it is not a proper component of the input. Well-founded recursion is not ideal
in mechanizations because, in general, they require one to conduct many proofs by complete induction
on the length of the syntax. In addition to being structurally recursive, Stoughton’s substitution op-
eration actually renames all bound variables without exempting those who may actually do not cause
trouble. Perhaps counterintuitively, this turns out to be very welcome because many proofs that follow
the structure of the syntax can be carried out smoothly without having to scrutinize the name of the bound
variables in the case of λ -abstractions, leading to a reduction in the number of cases considered.

The framework has been put to the test since then to verify many results about the pure λ -calculus and
the simply-typed λ -calculus (STLC). In [9], the authors formalized the Church-Rosser (CR) theorem for
the pure λ -calculus with β -conversion by the argument of Martin-Löf and Tait and subject reduction for
the STLC. In [10], the authors mechanized a proof of the standardization theorem by Kashima [17]. In
[31], a formal proof of the strong normalization theorem for STLC by Joachimski and Matthes [16] was
presented. Finally, in [30] a proof of strong normalization for System T by Girard [12] was mechanically
verified. In spite of having to consider α-conversion explicitly, the reports revealed that the workload in
terms of labour was still manageable.

*This work is partly supported by Agencia Nacional de Investigación e Innovación (ANII), Uruguay

https://dx.doi.org/10.4204/EPTCS.??.??
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Formal Metatheory of PTS using Multiple Substitutions

Now in this work we wish to test whether our approach scales well to more complex languages and
so we formalize a λ -calculi with dependent types: the Pure Type Systems (PTS) [3]. The PTS is a
generalization of the λ -cube that represent many systems under the same formalism and so it allows to
study many properties for all of them.

In order to mechanize the methatheory of the PTS, first we have to extend the syntax of the framework
with type-annotated or Church-style λ -abstractions and Π-types. As a consequence, we have to revisit
an important aspect of the theory of substitutions, namely that of restrictions, i.e., the confinement of
their domains, due to some technical reason that we will address in due course. Also, we generalize the
type of variables so it can be any in one-to-one correspondence with the natural numbers; in previous
works, names were identified with numbers, which takes away a bit of the fun of using names. Besides,
with this generalization we allow to use strings for the variables thus narrowing the gap between a
potential practical implementation of a type-checker (using names) and its certification. Finally, we give
a more accurate definition of α-conversion which will enable us to prove a key result in the theory of
α-conversion using simpler methods than in previous work. All four previous features compelled us to
virtually rewrite the framework entirely. The result is an Agda library with theories of substitution and
α-conversion for the underlying language of the PTS: a Church-style λ -calculus with Π-types.

Once we have the new framework we formalize some fundamental metatheoric properties of the
PTS, including: thinning (weakening), syntactic validity and closure under α-conversion and substitu-
tion. Following [20], we define the type system by using generalized induction, a technique which will
enable us to prove thinning by using structural induction, and then we will show that such presentation
is extensionally equivalent to a more standard one that does not feature such rule schemes. Besides, in
the course of the development of the metatheory we discuss a problem we had to face arising from the
use of renaming substitutions that only appear in the context of dependent types and which has not been
commented anywhere yet to the best of our knowledge.

The structure of this work is as follows. In the next section we introduce the new framework. Some
results are adapted from previous work and some others are new. From now on, all results constitute
new development. In Section 3 we present the PTS along with some basic properties. In Section 4 we
formalize thinning, syntactic validity and closure under α-conversion and substitution. In Section 5 we
comment on related work. Finally, in Section 6 we give some code metrics and conclude.

Throughout this paper we will use Agda notation for definitions and lemmas, and a mix with English
for the proofs with the hope of making reading more enjoyable. Some background on any dependently-
typed programming is preferable, though it might be enough for some readers to have an understanding
in functional programming. The complete sources can be found at the following link: https://github.
com/surciuoli/pts-metatheory.

2 The Framework

In this section we define the syntax of the λ -terms, substitution and α-conversion based on the work by
Stoughton [25] (extended to the language of our interest). Also, we prove some important results that we
will need in the following sections.

2.1 Syntax

Let V , the variables, be any type such that, first, propositional equality is decidable, and second, there
are two functions encode and decode such that encode maps every variable to a number and decode is its

https://github.com/surciuoli/pts-metatheory
https://github.com/surciuoli/pts-metatheory


S. Urciuoli 3

data Λ : Set where
c : C → Λ
v : V → Λ
λ[_:_]_ : V → Λ → Λ → Λ
Π[_:_]_ : V → Λ → Λ → Λ
_·_ : Λ → Λ → Λ

(a) Syntax

fv : Λ → List V
fv (c _) = []
fv (v x) = [ x ]
fv (λ[ x : A ] M) = fv A ++ (fv M - x)
fv (Π[ x : A ] B) = fv A ++ (fv B - x)
fv (M · N) = fv M ++ fv N

(b) Free Variables

Figure 1: λ -terms

right inverse. We shall use meta-variables x, y, etc. to range them. Let C , the constants, be any type and
whose elements are ranged by k and s. The abstract syntax of the λ -terms (Λ) is defined inductively in
Fig. 1a.

In Fig. 1b we define the function that returns the free names in a given λ -term, where _++_ is list
concatenation and _-_ : List V →V →List V the function that deletes every occurrence of some name
in a given list. We can then base ourselves upon fv to define whether a name occurs free in some λ -term
or not by: x * M = x ∈ fv M and read x is free in M and oppositely, x # M = x ̸∈ fv M and read x is
fresh for M.

The following results about lists will enable us to construct and destruct derivations of x ∗M and
x#M as if they were inductively defined:

Lemma 2.1. 1. appIn : ∀ {x} {xs ys : List V } → x ∈ xs ++ ys ↔ x ∈ xs ⊎ x ∈ ys

2. delIn : ∀ {x y xs} → x ∈ xs - y ↔ x ̸≡ y × x ∈ xs

3. appNotIn : ∀ {x} {xs ys : List V } → x ̸∈ xs ++ ys ↔ x ̸∈ xs × x ̸∈ ys

4. delNotIn : ∀ {x y xs} → x ̸∈ xs - y ↔ (x ≡ y ⊎ x ̸∈ xs)

where _⊎_ is disjoint union, _×_ non-dependent sum and A ↔ B = (A → B) × (B → A).

2.2 The Choice Function

To implement Stoughton’s substitution operation, first we need to define a function that chooses a fresh
name for a list of given names. This list will contain the free names in the image of the substitution
which need to be avoided when renaming the bound variables.

In previous version of the framework, names have been identified with the natural numbers, so the
choice function had type: χ' : List N → N. There it was shown that such function actually returns a
number fresh for the input list:

Lemma 2.2. xpfresh : ∀ xs → χ' xs ̸∈ xs

Now in this development, the names in the list have an abstract type V , hence we also need a more
abstract choice function. To this end, we define a new function X ′ such that, given a list xs, it encodes xs,
then calls the previous function and finally decodes the result. Formally:

X' : List V → V
X' xs = from (χ' (map to xs))

It follows that this new function also selects a fresh name for the input list:

Lemma 2.3. Xpfresh : ∀ xs → X' xs ̸∈ xs

Proof. By Lemma 2.2 and by the fact that decode is the right inverse of encode.



4 Formal Metatheory of PTS using Multiple Substitutions

2.3 Substitutions

Substitutions are functions from variables to terms:
Sub = V → Λ

We shall use the letter σ possibly with primes to range them. We define ι as the identity substitution, and
an update operation on substitutions _,_:=_ : Sub →V →Λ→Sub such that for any given substitution σ ,
λ -term N and names x and y, (σ ,x := N)y yields N if x equals to y and σy otherwise.

To reason about substitutions it turns out convenient to confine their domain to finite subsets of
them. In previous work, the authors introduced the restriction type, whose objects were just pairs of
substitutions and λ -terms (σ ,M) and which would be used anywhere it was required to reason about the
extension of σ only up to the free names in M. In our case, however, we shall see that we need a more
flexible definition, therefore we define restrictions as pairs of substitutions and list of names:
Res = Sub × List V

For instance, we can use them to extend the choice function to substitutions:
X : Res → V
X (σ , xs) = X' (concat (map (fv ◦ σ) xs))

where concat is the function that flattens a list of lists.
With our machinery for restrictions we can prove this extended choice function X also returns a fresh

name. Let the relations of free and fresh variables be extended to restrictions by:
x *⇂ (σ , xs) = ∃ λ y → y ∈ xs × x ∈ fv (σ y)
x #⇂ (σ , xs) = ∀ y → y ∈ xs → x # σ y

Then we have that X(σ ,xs) is fresh for every y ∈ xs:

Lemma 2.4. Xfresh : ∀ σ xs → X (σ , xs) # ⇂ (σ , xs)

Proof. By using lists properties and Lemma 2.3.

Without further ado, we define by recursion on the syntax the substitution operation, which given
any substitution σ and λ -term M, it replaces the free names in M by their corresponding images in σ

while renaming the bound variables at the same time to prevent any possible name capture:
_•_ : Λ → Sub → Λ
c k • _ = c k
v x • σ = σ x
M · N • σ = (M • σ) · (N • σ)
λ[ x : A ] M • σ = λ[ y : A • σ ](M • σ , x := v y) where y = X (σ , fv M - x)
Π[ x : A ] B • σ = Π[ y : A • σ ](B • σ , x := v y) where y = X (σ , fv B - x)

In the equation for λ -abstractions we could have defined y = X (σ , λ[ x : A ] M), and analogously
in the case of Π-types, and therefore saved us the trouble of revisiting the definition of restrictions.
Nevertheless, we find this to be rather unsatisfactory because in that case we would be excluding from
consideration those names that occur free in the image of A, but not necessarily in that of fvM − x, and
which are safe candidates to rename the bound variable. Hence we would not be choosing the first name
available but some one. We take the view that selecting the first name available is the best solution
because it is the most straightforward way to formally specify such operation. Besides, this way we are
aligned with the formal treatment of the λ -calculus in the literature [11, 15].

We shall use the next abbreviation for unary substitution: M [ x := N ] = M • ι , x := N.
The first result we have concerning the substitution operation is that it is actually capture-avoiding:



S. Urciuoli 5

Lemma 2.5. noCapture : ∀ {x M σ} → x ∈ fv (M • σ) ↔ x * ⇂ (σ , fv M)

Read right-to-left: if x is free in the image of σ then it will remain so in the final result. The other
direction is important as well, and it establishes that no free names are introduced by the operation other
than those occurring in the image of the σ (restricted to the free names in M).

Next we have some other nice properties on substitutions that we will use thoroughly in the next
sections. First, let equality on restrictions be defined by:
(σ , xs) ∼=⇂ (σ' , xs') = (xs ⊆ xs' × xs' ⊆ xs) × ∀ x → x ∈ xs → σ x ≡ σ' x

where list inclusion ⊆ is defined in the standard library by: xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys.
As a special case of equality on restrictions we define: σ ∼=σ' ⇂xs = (σ, xs) ∼=⇂(σ' , xs). Also, let
composition of substitutions be defined by:
(σ ⊙ σ') x = σ' x • σ

Then we have the next results which are extended from [9, 26, 30]:
Lemma 2.6. (i) subEqRes : ∀ {M σ σ'} → σ ∼= σ' ⇂ fv M → M • σ ≡ M • σ'

(ii) updFresh : ∀ {x M N σ} → x # M → M • σ , x := N ≡ M • σ

(iii) composRenUpd : ∀ {x z M N σ} → z ̸∈ fv M - x

→ M • σ , x := N ≡ M [ x := v z ] • σ , z := N

(iv) subDistribUpd : ∀ {M N σ x} → M • σ , x := (N • σ) ≡ M [ x := N ] • σ

(v) subComp : ∀ {M σ σ'} → M • σ • σ' ≡ M • σ' ⊙ σ

2.4 Alpha-conversion

We define α-conversion inductively by:

data _∼α_ : Λ → Λ → Set where
∼c : ∀ {k} → c k ∼α c k
∼v : ∀ {x} → v x ∼α v x
∼· : ∀ {M M' N N'} → M ∼α M' → N ∼α N' → M · N ∼α M' · N'
∼λ : ∀ {x x' y A A' M M'} → A ∼α A' → y ∉ fv M - x → y ∉ fv M' - x'

→ M [ x := v y ] ≡ M' [ x' := v y ] → λ[ x : A ] M ∼α λ[ x' : A' ] M'
∼Π : ∀ {x x' y A A' B B'} → A ∼α A' → y ∉ fv B - x → y ∉ fv B' - x'

→ B [ x := v y ] ≡ B' [ x' := v y ] → Π[ x : A ] B ∼α Π[ x' : A' ] B'

In the rule for λ -abstractions and Π-types we require that the bodies are syntactical equal once their
respective bound names have been replaced by a common fresh name. In former work the premises were
stated in terms of the very same relation being defined. Later in this section and by having a robust
infrastructure we will show a posteriori that both definitions for α-conversion are equivalent.

By using this formulation we can show the following result which is central in the theory of α-
conversion with simpler methods:
Lemma 2.7. iotaAlpha : ∀ {M M'} → M • ι ≡ M' • ι → M ∼α M'

Proof. By structural induction on M and subordinate case analysis on M′. We only show the sub-
case for the λ -abstractions which did not follow by structural induction before. The respective sub-
case for Π-types is analogous. There, given λ [x : A]M • ι ≡ λ [x′ : A′]M′ • ι , we must show that
λ [x : A]M ∼α λ [x′ : A′]M′. We proceed as follows. First, by definition of substitution we have that
our hypothesis is definitional equal to λ [z : A • ι ]M[x := z] ≡ λ [x′ : A′ • ι ]M′[x′ := z′] for some suffi-
ciently fresh names z and z′. Next, by injectivity of the constructors we know that z ≡ z′, A • ι ≡ A′ • ι

and M[x := z]≡ M′[x′ := z′]. Then, by the inductive hypothesis on A we have A ∼α A′. And finally, by
the rule of λ -abstractions we can derive the desired goal.



6 Formal Metatheory of PTS using Multiple Substitutions

Notice that we did not have to use the induction hypothesis on M[x := y]. Otherwise we would have to
use some method other than structural induction, e.g., complete induction on the length of M as in [26],
since M[x := y] is not a proper component of λ [x : A]M.

Next we have some properties about α-conversion that are extended quite directly from previous
work and which we are going to need later on . Let α-conversion be extended to restrictions by:
σ ∼α σ' ⇂ xs = ∀ x → x ∈ xs → σ x ∼α σ' x

Then:
Lemma 2.8. (i) compatSubAlpha : ∀ {M M' σ} → M ∼α M' → M • σ ≡ M' • σ

(ii) subAlpha : ∀ {M σ σ'} → σ ∼α σ' ⇂ fv M → M • σ ∼α M • σ'

(iii) ∼α is an equivalence.
(iv) composRenUnary : ∀ {x y σ M N} → y #⇂ (σ , fv M - x)

→ (M • σ , x := v y) [ y := N ] ∼α M • σ , x := N

Lemma 2.8.(i) not only states that substitution is compatible with α-conversion, but also that it
equalizes α-convertible λ -terms due to the uniform renaming of the bound variables. Following [25],
we will also say σ puts λ -terms into σ -normal form with respect to α-conversion or simply into σ -
normal form.

Note that Lemma 2.8.(iv) cannot be strengthened up to syntactical equality. On the left-hand side of
∼α we have that the image of σ for every name z ̸≡ x is being ι-normalized by the substitution ι ,y := N
(which has the same effect as ι since y is fresh for every image in σ by definition), while on the right-hand
side it is not. This observation will have some repercussions on the proof of closure under substitution
of the type system presented in Section 4.

2.4.1 Adequacy of Alpha-conversion

Let ∼αs be defined as ∼α except that in the clause for λ -abstractions and Π-types we have the following
premises for the bodies: M[x := y] ∼αs M′[x′ := y] and B[x := y] ∼αs B′[x′ := y] . It follows that both
definitions are extensionally equivalent.

As to the soundness of ∼α , first we need the following result which can be easily adapted from
previous work since it does not depend on any other result about α-conversion nor substitutions (the
proof is conducted by complete induction on the length of M as already commented somewhere):
Lemma 2.9. iotaAlphaSt : ∀ {M M'} → M • ι ≡ M' • ι → M ∼αs M'

Theorem 2.10. soundAlpha : ∀ {M N} → M ∼α N → M ∼αs N

Proof. Let M ∼α N. By Lemma 2.8.(i) we have M • ι ≡ N • ι , so by Lemma 2.9 we have M∼αs N.

As to the other direction, first we need the following result:
Lemma 2.11. alphaEq : ∀ {M M' x x' y} → M [ x := v y ] ∼α M' [ x' := v y ]

→ M [ x := v y ] ≡ M' [ x' := v y ]

Proof. Note that by definition of equality on restrictions we have that (ι ,x := y)∼= ι ⊙ (ι ,x := y) ⇂ xs for
any x, y and xs. Then we can reason in the following way:

M[x := y]≡ M • ι ⊙ (ι ,x := y) by Lemma 2.6.(i)

≡ M[x := y] • ι by Lemma 2.6.(v)

≡ M′[x′ := y] • ι by Lemma 2.8.(i)

≡ M′ • ι ⊙ (ι ,x′ := y) by Lemma 2.6.(v)

≡ M′[x′ := y] by Lemma 2.6.(i)



S. Urciuoli 7

Theorem 2.12. completeAlpha : ∀ {M N} → M ∼αs N → M ∼α N

Proof. By structural induction on the derivation of M ∼αs N. The only interesting cases are that of
λ -abstractions and Π-types. There, one has to use Lemma 2.11 to obtain the desired premises.

2.5 Beta-conversion

Given any binary relation on the λ -terms, _S _, we define its contextual closure by:

data _→C_ : Λ → Λ → Set where
→cxt : ∀ {M N} → M S N → M →C N
→λR : ∀ {x M M' A} → M →C M' → λ[ x : A ] M →C λ[ x : A ] M'
→ΠR : ∀ {x B B' A} → B →C B' → Π[ x : A ] B →C Π[ x : A ] B'
→λL : ∀ {x M A A'} → A →C A' → λ[ x : A ] M →C λ[ x : A' ] M
→ΠL : ∀ {x B A A'} → A →C A' → Π[ x : A ] B →C Π[ x : A' ] B
→·L : ∀ {M N P} → M →C N → M · P →C N · P
→·R : ∀ {M N P} → M →C N → P · M →C P · N

β -contraction (▷β ) is defined as the inductive relation with the single rule: λ [x : A]M ·N ▷β M[x := N].
Then one-step β -reduction (→β) is defined as its contextual closure: _→β_ = _→C_ _▷β_. Many-step
β -reduction (→β*) and β -conversion (≃β) are respectively defined as the symmetric-and-transitive and
equivalence closure of β -reduction augmented with α-conversion: _→β*_ = Star (_∼α_ ∪_→β_) and
_≃β_ = EqClosure (_∼α_ ∪_→β_).

Our definition of one-step β -reduction is compatible with substitution only up to α-conversion as in
Hindley and Seldin’s treatment, thought there this result is left implicit. The proof is adapted from [30]:

Lemma 2.13. compatRedSub : ∀ {M N σ} → M →β N → ∃ λ P → M • σ →β P × P ∼α N • σ

Many-step β -reduction and β -conversion, on the other hand, are “fully” closed under substitution
and their proofs follow by structural induction on the derivations of the respective hypotheses, and which
are also extended from the aforementioned cite:

Lemma 2.14. (i) compatRedsSub : ∀ {M N σ} → M →β* N → M • σ →β* N • σ

(ii) compatConvSub : ∀ {M N σ} → M ≃β N → M • σ ≃β N • σ

3 The Pure Type Systems

Let A , the axioms, be any binary relation on C , and let R, the rules, be any 3-ary relation on C as well.
Whenever some s1 is related to some other s2 under A we shall write A s1 s2 as is the case for infix
relations in most implementations of type theory, e.g., Agda. We will do analogously for R.

The PTS is inductively defined in Figure 2, where Γ,x : A is definitionally equal to (x,A) :: Γ. We
roughly follow the presentation in Section 4.4.10 of [23]. We have two kinds of judgments mutually
defined and with the following meaning: (i) Γok means that Γ is a valid or well-formed context, and;
(ii) Γ ⊢ M : A that M has type A under the context Γ.

To be more precise, the type system is defined by using generalized induction [20, p. 382]. The
rules ⊢abs and ⊢prod have infinitely many branching trees due to the scope of the quantification in the
premises concerning the body of the abstractions therein. Having a derivation for every fresh name will
give us a stronger induction hypothesis in the cases at issue for the proof of the thinning lemma, which
otherwise we would have to prove by complete induction on the length of the derivations or by using
some equivariance result (renaming lemmas). A more up-to-date version of this technique is known as



8 Formal Metatheory of PTS using Multiple Substitutions

⊢nil
[]ok

Γok Γ ⊢ A : s⊢cons (x ̸∈ domΓ)
Γ,x : Aok

Γok⊢sort (A s1 s2)
Γ ⊢ s1 : s2

Γ ⊢ A : s1 ∀y → y ̸∈ domΓ → Γ,y : A ⊢ B[x := y] : s2⊢prod (R s1 s2 s3)
Γ ⊢ Π[x : A]B : s3

Γok⊢var ((x,A) ∈ Γ)
Γ ⊢ x : A

Γ ⊢ A : s1 ∀z → z ̸∈ domΓ → Γ,z : A ⊢ B[y := z] : s2

∀z → z ̸∈ domΓ → Γ,z : A ⊢ M[x := z] : B[y := z]
⊢abs (R s1 s2 s3)

Γ ⊢ λ [x : A]M : Π[y : A]B

Γ ⊢ M : Π[x : A]B Γ ⊢ N : A Γ ⊢ B[x := N] : s
⊢app

Γ ⊢ M ·N : B[x := N]

Γ ⊢ M : A A ≃β B Γ ⊢ B : s
⊢conv

Γ ⊢ M : B

Figure 2: Pure Type Systems

cofinite quantification. We note that Agda does not give any special meaning to generalized induction
and it is treated just as any other inductive clause. We will also refer to these kind of rules as infinitary.

The occurrence of the premise Γ ⊢ A : s1 in the rule ⊢prod is standard, e.g., see [3]. On the other
hand, having Γ ⊢ B[x := N] : s in the ⊢app rule is new to the best of our knowledge, and as we shall see
in due course, it is convenient for the proof of the substitution lemma when using Stoughton’s definition.

3.1 Basic Properties

To begin with, we have that variables mentioned anywhere must be declared:
Lemma 3.1. (i) fvCxt : ∀ {Γ x A w} → Γ ok → (x , A) ∈ Γ → w * A → w ∈ dom Γ

(ii) fvAsg : ∀ {Γ M A w} → Γ ⊢ M : A → x * M · A → w ∈ dom Γ

Proof. By simultaneous induction on the the structure of the typing derivation and subordinate case
analysis on the occurrence of w. The only interesting case is that of λ -abstractions; the others follow
either analogously or directly by the IH. There, we have the hypotheses:

Γ ⊢ A : s1 ∀z → z ̸∈ domΓ → Γ,z : A ⊢ B[y := z] : s2

∀z → z ̸∈ domΓ → Γ,z : A ⊢ M[x := z] : B[y := z]
(a) (R s1 s2 s3)

Γ ⊢ λ [x : A]M : Π[y : A]B

and (b) w ∈ fv (λ [x : A]M++Π[x : A]B), and we must show w ∈ domΓ. By Lemma 2.1 there are three
different cases as to the generation of (b):

• Case w∗A. Immediate by the IH (ii).

• Case w ∗M and x ̸≡ w. Let z = X ′(w :: domΓ). By Lemma 2.3 we have that z ̸∈ w :: domΓ, thus
z ̸∈ domΓ and z ̸≡ w. Next, since w∗w[x := z] then we have w∗M[x := z] by Lemma 2.5. Finally,
by the IH (ii) using the bottom-most premise we have w ∈ domz :: Γ, hence w ∈ domΓ.



S. Urciuoli 9

• Case w∗B and y ̸≡ w. Analogous to the previous case.

The next result follows directly as the contrapositive of the previous lemma:
Corollary 3.1.1. (i) freshCxt : ∀ {Γ y A w} → Γ ok → w ̸∈ dom Γ → (y , A) ∈ Γ → w # A

(ii) freshAsg : ∀ {Γ M A w} → w ̸∈ dom Γ → Γ ⊢ M : A → w # M · A

Lastly, the following results about the validity of contexts and generation of Π-types are routine:
Lemma 3.2. (i) validCxt : ∀ {Γ M A} → Γ ⊢ M : A → Γ ok

(ii) genProd : ∀ {Γ x A B C} → Γ ⊢ Π[ x : A ] B : C → ∃3 λ s1 s2 s3 → R s1 s2 s3
× Γ ⊢ A : c s1 × (∀ y → y ̸∈ dom Γ → Γ ‚ y : A ⊢ B [ x := v y ] : c s2) × C ≃β c s3

4 Some Fundamental Metatheory

The type system presented in the previous section enjoys some nice metatheoretic properties such as
thinning (Lemma 4.1), syntactic validity (Lemma 4.3), closure under α-conversion (Lemma 4.4) and
substitution (Lemma 4.6).

The thinning lemma follows quite easily thanks to the use of generalized induction.
As to the other results, the situation is a bit more complicated. Consider a presentation of the type

system in which the application rule does not mention the third premise, and let use proceed to prove
informally, to begin with, syntactic validity and by using structural induction. In the complex case of
applications we are given:

Γ ⊢ M : Π[x : A]B Γ ⊢ N : A
Γ ⊢ M ·N : B[x := N]

(1)

and we have to show that B[x := N] is a valid type, i.e., either Γ ⊢ B[x := N] : s or B[x := N]≡ s for some
sort s. First, by the induction hypothesis we can derive that Γ ⊢ Π[x : A]B : s. Then, by the generation
lemma we get Γ,y : A ⊢ B[x := y] : s for every fresh name y. Now, to derive the goal from this last result
we have to apply the substitution ι ,y := N and obtain a valid type, all of which requires having some
substitution lemma at hand. So far is routine.

Next let us consider the proof of closure under substitution of the type system. Again, let us take
a look at the case of applications. Given (1), we have to show ∆ ⊢ (M ·N) • σ : B[x := N] • σ for
some context ∆. By the induction hypothesis on each premise followed by the application rule one can
derive ∆ ⊢ (M ·N) • σ : (B • σ ,x := x′)[x′ := N • σ ]. Now, the types (B • σ ,x := x′)[x′ := N • σ ] and
B[x := N] • σ are not identical but α-convertible, as already commented somewhere, so it is necessary
to have closure under α-conversion at hand. In [19, 20, 23] the authors were able to prove directly the
lemma because there substitution preserves the identity of the λ -terms. However, as we shall discuss
later on, they had to resort to more involved methods than us for an important lemma in the theory of
conversion.

An alternative to using closure under α-conversion above is to use the conversion rule and rewrite
the types at question, however, this is not easy. In that case, one should first build a derivation of the
(syntactic) validity of (B • σ ,x := x′)[x′ := N • σ ]. The direct procedure to this end is to use the validity
lemma on the left-hand side premise in (1), then the generation lemma to obtain B[x := y] for some fresh
name y and finally the induction hypothesis twice, once with σ ,y := z and other time with ι ,z :=N • σ for
some sufficiently fresh name z (which might perfectly be the same name as y), all of which yields a result
identical to the one desired because of Lemma 2.6.(iii).1. Now, the main problem with this argument is

1Note that we do not have a result for composing well-typed substitutions, a result which seems to require the very same
lemma we are trying to prove.



10 Formal Metatheory of PTS using Multiple Substitutions

that it is not always the case that the derivation of the validity of B[x := y] constructed during the proof
of the validity lemma is of a smaller size in any way than that of (1), hence the well-foundedness of the
whole argument is questioned. A more elaborated method is required.

So, back to our point, the proof of closure under α-conversion also relies on the previous lemmas.
In the case of applications we have M ·N ∼α M′ ·N′, in addition to (1), and we must find a derivation
of ∆ ⊢ M′ ·N′ : B[x := N] for some context ∆. By the induction hypotheses followed by the application
rule we can derive ∆ ⊢ M′ ·N′ : B[x := N′]. Now, to rewrite the type B[x := N′] into B[x := N], first we
have to show that the latter is a valid type. This only seems possible if we use syntactic validity and then
substitution, and so closing the dependency circle.

Now, instead of attempting to prove all three lemmas simultaneously, we will make a slight simplifi-
cation to the problem. By adding the premise Γ ⊢ B[x := N] : s to the application rule we have managed
to cut two of the dependencies: α-conversion on syntactic validity, and the latter on substitution. As
a result, we shall see that syntactic validity and α-conversion can be proven separately and first, and
substitution after. Furthermore, we shall prove that said premise is derivable in the sense that we can
consider a presentation of the type system that does not mention it yet derives the same judgments.

4.1 Thinning

To begin with, we have the thinning lemma which follows in a fairly direct way (we refer the reader to
[23, p. 65] for an account on the proof):

Lemma 4.1. thinning : ∀ {Γ ∆ M A} → Γ ⊆ ∆ → ∆ ok → Γ ⊢ M : A → ∆ ⊢ M : A

4.2 Syntactic Validity

Every type assignable to some λ -term is itself a valid type. For many presentations, e.g., [3, 13, 19, 20,
23], this result has to wait until closure under substitution has been established. In our case, however,
because we have added the aforementioned premise we can show it in advance.

The proof is really straightforward and we do not need to use induction, just case analysis. We only
need the next lemma for the case of variables and which follows by structural induction on the derivation
of Γok and by using the thinning lemma:

Lemma 4.2. validDecl : ∀ {Γ x A} → Γ ok → (x , A) ∈ Γ → ∃ λ s → Γ ⊢ A : c s

Lemma 4.3. syntacticValidity : ∀ {Γ M A} → Γ ⊢ M : A → ∃ λ s → A ≡ c s ⊎ Γ ⊢ A : c s

4.3 Closure Under Alpha-conversion

Next we have closure under α-conversion. We are going to split the lemma in half, one for the conversion
of subjects and the other for the predicates.

Let α-conversion be extended to contexts pointwise by:
_≈α_ = Pointwise (λ (x , A) (y , B) → x ≡ y × A ∼α B)

Then we have the first part:

Lemma 4.4. (i) closAlphaCxt : ∀ {Γ ∆} → Γ ≈α ∆ → Γ ok → ∆ ok

(ii) closAlphaAsg : ∀ {Γ ∆ M N A} → Γ ≈α ∆ → M ∼α N → Γ ⊢ M : A → ∆ ⊢ N : A

Proof. By simultaneous induction on the structure of the typing derivation. We only show some cases:

• Case ⊢abs. We have:



S. Urciuoli 11

Γ ⊢ A : s1 ∀z → z ̸∈ domΓ → Γ,z : A ⊢ B[y := z] : s2

∀z → z ̸∈ domΓ → Γ,z : A ⊢ M[x := z] : B[y := z]
(R s1 s2 s3)

Γ ⊢ λ [x : A]M : Π[y : A]B

and λ [x : A]M ∼α λ [x′ : A′]M′ which follows from A ∼α A′ and M[x := w]≡ M′[x′ := w] for some
w not in fvM − x nor in fvM′ − x′. We have to show: ∆ ⊢ λ [x′ : A′]M′ : Π[y : A]B. To use the
λ -abstraction rule to derive ∆ ⊢ λ [x′ : A′]M′ : Π[y : A′]B, and so then use the conversion rule to
rewrite Π[y : A′]B into Π[y : A]B, first we need to show:

(a) ∆ ⊢ A : s1;

(b) ∆,z : A′ ⊢ B[y := z] : c2 for all z ̸∈ dom∆, and;

(c) ∆,z : A′ ⊢ M[x := z] : B[y := z] for all z ̸∈ dom∆.

(a) is immediate by the IH (ii). As to (b) and (c), we show only the latter since the other is anal-
ogous. Let z be some name not in dom∆. Then we also have that z ̸∈ domΓ by definition of ≈α .
Next, by congruence on one of the hypotheses we have M[x := w][w := z]≡ M′[x′ := w][w := z],
and by Lemma 2.6.(iii) we can obtain M[x := z]≡ M′[x′ := z]. Then, since α-conversion is reflex-
ive, we have M[x := z]∼α M′[x′ := z], so we can use the IH (ii) and get ∆ ⊢ λ [x′ : A′]M′ : Π[y : A′]B.
Now, it is easy to show that Π[y : A]B ∼α Π[y : A′]B, hence by the IH (ii) we have ∆ ⊢ Π[y : A′]B,
and so we can use the conversion rule as explained earlier.

• Case ⊢app. There we have:

Γ ⊢ M : Π[x : A]B Γ ⊢ N : A Γ ⊢ B[x := N] : s
Γ ⊢ M ·N : B[x := N]

M ∼α M′ and N ∼α N′, and we must show ∆ ⊢ M′ ·N′ : B[x := N]. First, note that ι ,x := N and
ι ,x :=N′ assigns α-convertibles terms to every variable, thus we have ι ,x :=N ∼α ι ,x :=N′ ⇂ fvB.
Then, by Lemma 2.8.(ii) we obtain B[x := N′] ∼α B[x := N]. Now, by the IH (ii) on each premise
followed by the application rule we obtain ∆ ⊢ M′ ·N′ : B[x := N′]. Finally, by the IH (ii) again we
can derive ∆ ⊢ B[x := N] : s and so we can rewrite the types to obtain the desired goal.

As to the second part of the lemma we have that predicates are closed under α-conversion as well.
Its proof follows directly by using closure of the subjects and syntactic validity:

Corollary 4.4.1. closAlphaPr : ∀ {Γ ∆ M A B} → Γ ∼αs ∆ → A ∼α B → Γ ⊢ M : A → ∆ ⊢ M : B

4.4 Closure Under Substitution

Having established thinning, syntactic validity and closure under α-conversion, we are almost ready to
prove the substitution lemma. But first, some quick preparatory definitions. Let us define well-typed
substitutions from variables in Γ to terms of appropriate type under ∆ by:

σ : Γ ⇀ ∆ = ∀ {x A} → (x , A) ∈ Γ → ∆ ⊢ σ x : A • σ

The next result will provide us the required hypothesis to invoke the induction hypothesis in the case of
λ -abstractions and Π-types:

Lemma 4.5. subRen : ∀ {Γ ∆ x y s A σ} → x ̸∈ dom Γ → y ̸∈ dom ∆ → Γ ⊢ A : c s

→ ∆ ⊢ A • σ : c s → σ : Γ ⇀ ∆ → (σ , x := v y) : (Γ ‚ x : A) ⇀ (∆ ‚ y : A • σ)



12 Formal Metatheory of PTS using Multiple Substitutions

Proof. By definition of well-typed substitutions, we must show that for any declaration (z,B) ∈ Γ,x : A,
it follows that ∆,y : A • σ ⊢ (σ ,x := y)z : B • (σ ,x := y). First, notice that by Lemma 3.2.(i) we have
∆ok. Also, since y ̸∈ dom∆, then by the ⊢cons rule we have ∆,y : A • σ ok as well. Next we analyze
whether z is equal to x or not:

• Case z ≡ x. Then A ≡ B must also be the case, so the goal becomes ∆,y : A • σ ⊢ y : A • σ ,x := y.
By ⊢var we have ∆,y : A • σ ⊢ y : A • σ . Then, by the Corollary 3.1.1 we have x#A, hence by
Lemma 2.6.(ii) we know that A • σ ,x := y ≡ A • σ , and so we can rewrite the type in the previous
derivation into A • σ ,x := y to obtain our goal.

• Case z ̸≡ x. Then (z,B)∈ Γ and we must show ∆,y : A • σ ⊢ σz : B • σ ,x := y. First, by hypothesis
we have ∆ ⊢ σz : A • σ , so by thinning we also have ∆,y : A • σ ⊢ σz : B • σ ,x := y. Then we can
proceed analogously to the previous case and rewrite the type B • σ ,x := y into B • σ .

Then we have that typing is closed under well-typed substitutions:

Lemma 4.6. closureSub : ∀ {Γ ∆ M A σ} → σ : Γ ⇀ ∆ → ∆ ok → Γ ⊢ M : A

→ ∆ ⊢ M • σ : A • σ

Proof. By simultaneous induction on the typing derivation. We only show some cases:

• Case ⊢abs. We have:

Γ ⊢ A : s1 ∀z → z ̸∈ domΓ → Γ,z : A ⊢ B[y := z] : s2

∀z → z ̸∈ domΓ → Γ,z : A ⊢ M[x := z] : B[y := z]
(R s1 s2 s3)

Γ ⊢ λ [x : A]M : Π[y : A]B

and we must derive ∆ ⊢ λ [x′ : A • σ ](M • σ ,x := x′) : Π[y′ : A • σ ](B • σ ,y := y′), where x′ and
y′ are definitional equal to X(σ , fvM−x) and X(σ , fvB−y) respectively. To use the λ -abstraction
rule to derive our goal first we need to show:

(a) ∆ ⊢ A • σ : s1

(b) ∆,z :A • σ ⊢ (B • σ ,y := y′)[y′ := z] : c2 for all z ̸∈ dom∆, and;
(c) ∆,z :A • σ ⊢ (M • σ ,x :=x′)[x′ := z] : (B • σ ,y := y′)[y′ := z] for all z ̸∈ dom∆.

(a) is immediate from the IH. As to (b) and (c), again, we only show the latter. Let z be any
name not in ∆ and let w = X ′(domΓ). By Lemma 2.3 we have w ̸∈ domΓ, thus by Lemma 4.5
(σ ,w := z) : (Γ,w : A)⇀ (∆,z : A • σ). Next, by the IH with the previous result we have:

∆,z : A • σ ⊢ M[x := w] • (σ ,w := z) : B[y := w] • (σ ,w := z) (2)

Now, to derive our goal it suffices to show that the subjects in the goal (b) and in (2) are α-
convertible, and similarly with the predicates therein. As to the subjects, first, by Lemma 3.1.1 we
note that w ̸∈ fvM−x, thus by Lemma 2.6.(ii) we have M[x := w] • (σ ,w := z′)≡ M • (σ ,x := z′).
And second, by Lemma 2.4 we have x′ #⇂(σ , fvM− x), hence we can use Lemma 2.8.(iv) and
derive that M • (σ ,x := z) ∼α (M • σ ,x := x′)[x′ := z]. We can reason analogously to show that
types are also α-convertible. Finally, by closure under α-conversion we can obtain (b).

• Case ⊢app. We have:

Γ ⊢ M : Π[x : A]B Γ ⊢ N : A Γ ⊢ B[x := N] : s
Γ ⊢ M ·N : B[x := N]



S. Urciuoli 13

⊢nil
[]ok

Γok Γ ⊢ A : s⊢cons (x ̸∈ domΓ)
Γ,x : Aok

Γok⊢sort (A s1 s2)
Γ ⊢ s1 : s2

Γ ⊢s A : s1 Γ,y : A ⊢s B[x := y] : s2⊢prod

{
R s1 s2 s3

y ̸∈ fvB− xΓ ⊢s Π[x : A]B : s3

Γok⊢var ((x,A) ∈ Γ)
Γ ⊢ x : A

Γ ⊢s A : s1 Γ,z : A ⊢s B[y := z] : s2 Γ,z : A ⊢s M[x := z] : B[y := z]
⊢abs


R s1 s2 s3

z ̸∈ fvM− x
z ̸∈ fvB− y

Γ ⊢s λ [x : A]M : Π[y : A]B

Γ ⊢s M : Π[x : A]B Γ ⊢s N : A
⊢app

Γ ⊢s M ·N : B[x := N]

Γ ⊢ M : A A ≃β B Γ ⊢ B : s
⊢conv

Γ ⊢ M : B

Figure 3: Standard (Finitary) PTS

and we must show ∆ ⊢ M ·N • σ : B[x := N] • σ . By the IH on each premise followed by the
application rule we have ∆ ⊢ (M ·N) • σ : (B • σ ,x := x′)[x′ := N • σ ] where x′ = X(σ , fvB− x).
Next, we can use Lemma 2.8.(iv) and derive (B • σ ,x := x′)[x′ := N • σ ] ∼α B • σ ,x := (N • σ).
Finally, by Lemma 2.6.(iv) we have B • σ ,x := (N • σ) ≡ B[x := N] • σ so by closure under α-
conversion we obtain our goal.

• Case ⊢conv. By the IH and Lemma 2.14.(ii).

As a particular case of the substitution lemma we have the following cut result, which will turn
out to be helpful in the following section. First, let _••_ : Cxt → Sub → Cxt be the operation that
extends substitution to contexts pointwise. We have the next result for unary substitutions (whose proof
is analogous to the proof of Lemma 4.5):

Lemma 4.7. subUnary : ∀ {x Γ N A} → x ̸∈ dom Γ → Γ ⊢ A → Γ •• ι ⊢ N : A • ι

→ (ι , x := N) : (Γ ‚ x : A) ⇀ Γ •• ι

Then we have the cut lemma:

Lemma 4.8. cut : ∀ {Γ M N A B x} → Γ ‚ x : A ⊢ M : B → Γ ⊢ N : A

→ Γ ⊢ M [ x := N ] : B [ x := N ]

Proof. By Lemma 4.3, closure under α-conversion, Lemma 4.7, context validity and Lemma 4.6.

4.5 Adequacy of the Type System

The type system defined in Fig. 2 is equivalent to one which uses finitary rules, i.e., without using
generalized induction or cofinite quantification in the ⊢prod and ⊢abs rules, and furthermore, which
does not mention the third premise in the application rule. Fig. 3 shows such a presentation. For a brief
discussion on why the freshness conditions in the finitary version are stated relative to the λ -terms therein
while in the infinitary one are relative to the context we refer the reader to [23, p. 61].



14 Formal Metatheory of PTS using Multiple Substitutions

First, we have that the infinitary version of the system is sound:

Theorem 4.9. (i) ptsSound : ∀ {Γ} → Γ ok → Γ oks
(ii) ptsSound : ∀ {Γ M A} → Γ ⊢ M : A → Γ ⊢s M : A

Proof. By straightforward induction on the structure of the judgments. In the case of products and
abstractions, to derive the corresponding premises one has to pick some sufficiently fresh name, e.g.,
X ′(domΓ), and use Corollary 3.1.1 to derive the freshness side-conditions.

The type system is also complete. To prove it, we need the following renaming lemma (whose proof
follows similarly to that of Lemma 4.5):

Lemma 4.10. unaryRen : ∀ {Γ x y A M B} → y ̸∈ dom Γ → Γ ‚ x : A ⊢ M : B

→ Γ ‚ y : A ⊢ M [ x := v y ] : B [ x := v y ]

Theorem 4.11. (i) ptsComplete : ∀ {Γ} → Γ oks → Γ ok

(ii) ptsComplete : ∀ {Γ M A} → Γ ⊢s M : A → Γ ⊢ M : A

Proof. By induction on the structure of the judgments.

• Case ⊢abs. We have:

Γ ⊢s A : s1 Γ,z : A ⊢s B[y := z] : s2 Γ,z : A ⊢s M[x := z] : B[y := z]
Γ ⊢s λ [x : A]M : Π[y : A]B

with z ̸∈ fvM − x and z ̸∈ fvB− y, and we must derive Γ ⊢ λ [x : A]M : Π[y : A]B. To use the
abstraction rule we have to translate each premise. The left-most one is immediate from the IH (ii).
The other two are analogous so we will show only the right-most one. First, by the IH (ii) we have
Γ,z : A ⊢ M[x := z] : B[y := z]. Let z′ be some name not in domΓ. By Lemma 4.10 we have
Γ,z′ : A ⊢ M[x := z][z := z′] : B[y := z][z := z′], so by Lemma 2.6.(iii) we have the desired result.

• Case ⊢app. We have:

Γ ⊢s M : Π[x : A]B Γ ⊢s N : A
Γ ⊢s M ·N : B[x := N]

and we must derive Γ ⊢ M ·N : B[x := N]. By the IH (ii) we have Γ ⊢ M : Π[x : A]B and Γ ⊢ N : A.
Let z=X ′(domΓ). By syntactic validity we obtain Γ⊢Π[x : A]B : s for some s, so by the generation
lemma we derive Γ,z : A ⊢ B[x := z] : s. Now, by cut we have Γ ⊢ B[x := z][z := N] : s, and so by
Lemma 2.6.(iii) we can derive the missing premise, Γ ⊢ B[x := N] : s.

5 Related Work

McKinna and Pollack [19, 20, 23] put forward in the LEGO proof assistant [18] the mechanization of
a great body of knowledge about the metatheory of a generalization of the PTS, the Cumulative Type
System (CTS): CR and standardization for β -conversion, subject reduction, decidability of the type
system (assuming normlization), etc. The syntax uses two sort of names, one for the free variables and
other for the bound ones. Consequently, two definitions of the substitution operation must be given. Since
the set of variables are disjoint, it is impossible for name capture to happen. Besides, since substitution
does not perform any renaming, the identity of the λ -terms is preserved during the operation. As a result,



S. Urciuoli 15

α-conversion is seldom used in the whole development. However, since the syntax allows to build λ -
term that do not have an ordinary interpretation, i.e., those who mention names from the set of the bound
variables which are actually not bound to any λ -abstraction or Π-type, a wellformedness predicate must
accompany many results to rule them out from consideration and which becomes rather ubiquitous.

Barras and Werner [6, 7] mechanized a substantial part of the metatheory of the Calculus of Con-
structions (CC) in Coq culminating with the decidability of the type system. The syntax uses de Bruijn
notation. In an unpublished work [5], Barras extended the metatheoretic results to the PTS and CTS. The
sources can be found in [27].

In [29], Urban et al. used the Isabelle/HOL system [21] together with the Nominal Datatype Package
(NDP) or Nominal Isabelle [28] to mechanize the metatheory of LF [14]. The NDP provides a framework
to work with inductive types with binders and their associated induction and recursion principles modulo
α-conversion. A limitation of their approach is that the NDP does not yet allow generating executable
code, so an implementation for a type-checker cannot be extracted directly. Also, since HOL is founded
on classical logic, the results about the decidability of LF were not entirely formalized. The sources for
LF and NDP can be found respectively in [4] and in Isabelle’s distribution [8].

Next we point out the reader some work at the forefront in the mechanization of type theory; these
developments focus on larger object theories, e.g., featuring universes, large elimination, Σ-types, and
so on, thus a comparison with our work does not seem relevant yet (all of them use de Bruijn indices):
In [1], Abel et al. present a proof of the decidability of conversion for a fragment of Martin-Löf’s Type
Theory in Agda; Adjedj et al. [2] use Coq to mechanize a proof of the decidability for a type system of
similar characteristics to the one above, and; in [24], Sozeau et al. present a partial formalization about
the decidability of a considerable part of Coq’s kernel (normalization is assumed), written in Coq.

6 Conclusions

We have formalized on machine some interesting body of knowledge for the PTS using conventional
syntax, i.e., first-order with one-sorted variables names and without identifying α-convertible λ -terms.
Among other results we have proven: weakening, syntactic validity, closure under α-conversion and
substitution. In the course we had to update the existing framework of Stoughton’s substitutions with
Church-style λ -abstractions and Π-types. We have also given a new definition for α-conversion that
works better than previous ones in that it allowed us to prove some key lemmas by using simpler methods.
Except for the adequacy of this new definition, which is not used in the whole development, all results
follow by structural induction on the various relations defined.

The use of conventional syntax allowed us to prove closure under substitution of conversion directly
by using structural induction. In contrast, McKinna and Pollack had to give an alternative definition
using infinitary rules. The proof that both characterizations define the same relation follows by a multiple
renaming lemma. This is also the case for the adequacy of the type system. In our case, we did not prove
adequacy for conversion since our characterization is almost the same as the one appearing in common
textbooks. As to the adequacy of the type system, we have been able to reuse the substitution lemma.

The resulting Agda code is within the limits of what is manageable. The entire development spans
about 3000LOC and it is divided equally between the framework and the metatheory of the PTS. To
put in perspective, the work by Urban et al. is about 15KLOC, from which 1800LOC belongs to the
metatheory up to syntactic validity, a bit larger than our counterpart.The NDP on the other hand is over
9300LOC.As to the work by Barras on the PTS in [5] (which does not address the problem of names at
all since it uses de Bruijn indices), the entire corresponding formalization is approximately 2600LOC.



16 Formal Metatheory of PTS using Multiple Substitutions

References

[1] Andreas Abel, Joakim Öhman & Andrea Vezzosi (2018): Decidability of conversion for type theory in type
theory. In: Proc. ACM Program. Lang., 2, pp. 23:1–23:29, doi:10.1145/3158111.

[2] Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot & Loïc Pujet (2024): Martin-
Löf à la Coq. In: Proceedings of the 13th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2024, Association for Computing Machinery, New York, NY, USA, p. 230–245,
doi:10.1145/3636501.3636951.

[3] H. P. Barendregt (1992): Lambda calculi with types. In Abramsky, Gabbai & Maibaum, editors: Handbook
of Logic in Computer Science (Vol. 2): Background: Computational Structures, Oxford University Press,
Inc., USA, p. 117–309, doi:10.1093/oso/9780198537618.003.0002.

[4] Bruno Barras: Sources of the PTS formalization. Available at https://github.com/rocq-archive/pts/
tree/v8.5.

[5] Bruno Barras: Type-checking PTS. Available at https://www.lix.polytechnique.fr/~barras/pts_
proofs/PTS/main.html. Webpage.

[6] Bruno Barras (1996): Coq en Coq. Rapport de Recherche 3026, INRIA.

[7] Bruno Barras & Benjamin Werner: Coq in Coq. Available at https://www.lix.polytechnique.fr/
~barras/download/coqincoq.ps.gz. Unpublished manuscript.

[8] University of Cambridge & Technische Universität München: Isabelle 2016 Homepage. Available at https:
//isabelle.in.tum.de/website-Isabelle2016-1/index.html.

[9] Ernesto Copello, Nora Szasz & Álvaro Tasistro (2016): Formal metatheory of the Lambda calculus using
Stoughton’s substitution. Theoretical Computer Science 685, doi:10.1016/j.tcs.2016.08.025.

[10] Martín Copes, Nora Szasz & Álvaro Tasistro (2018): Formalization in Constructive Type Theory of the
Standardization Theorem for the Lambda Calculus using Multiple Substitution. In Frédéric Blanqui &
Giselle Reis, editors: Proceedings of the 13th International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, LFMTP@FSCD 2018, Oxford, UK, 7th July 2018, EPTCS 274, pp. 27–41,
doi:10.4204/EPTCS.274.3.

[11] H.B. Curry & R. Feys (1958): Combinatory Logic. Combinatory Logic v. 1, North-Holland Publishing
Company. Available at https://books.google.com.uy/books?id=fEnuAAAAMAAJ.

[12] Jean-Yves Girard, Paul Taylor & Yves Lafont (1989): Proofs and types. Cambridge University Press, USA.

[13] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A framework for defining logics. J. ACM 40(1), p.
143–184, doi:10.1145/138027.138060.

[14] Robert Harper & Frank Pfenning (2005): On equivalence and canonical forms in the LF type theory. ACM
Trans. Comput. Logic 6(1), p. 61–101, doi:10.1145/1042038.1042041.

[15] J. Roger Hindley & Jonathan P. Seldin (1986): Introduction to Combinators and Lambda-Calculus. Cam-
bridge University Press.

[16] F. Joachimski & R. Matthes (2003): Short Proofs of Normalization for the simply-typed lambda-calculus,
permutative conversions and Gödel’s T. Archive for Mathematical Logic 42, p. 59–87, doi:10.1007/s00153-
002-0156-9.

[17] Ryo Kashima (2000): A Proof of the Standardization Theorem in Lambda-Calculus. Technical Report C-145,
Research Reports on Mathematical and Computing Sciences, Tokyo Institute of Technology.

[18] Zhaohui Luo & Robert Pollack (1992): LEGO Proof Development System: User’s Manual. Technical Report,
University of Edinburgh. Available at http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-211.

[19] James McKinna & Robert Pollack (1993): Pure type systems formalized. In Marc Bezem & Jan Friso Groote,
editors: Typed Lambda Calculi and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 289–
305, doi:10.1007/BFb0037113.

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1093/oso/9780198537618.003.0002
https://github.com/rocq-archive/pts/tree/v8.5
https://github.com/rocq-archive/pts/tree/v8.5
https://www.lix.polytechnique.fr/~barras/pts_proofs/PTS/main.html
https://www.lix.polytechnique.fr/~barras/pts_proofs/PTS/main.html
https://www.lix.polytechnique.fr/~barras/download/coqincoq.ps.gz
https://www.lix.polytechnique.fr/~barras/download/coqincoq.ps.gz
https://isabelle.in.tum.de/website-Isabelle2016-1/index.html
https://isabelle.in.tum.de/website-Isabelle2016-1/index.html
https://doi.org/10.1016/j.tcs.2016.08.025
https://doi.org/10.4204/EPTCS.274.3
https://books.google.com.uy/books?id=fEnuAAAAMAAJ
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1007/s00153-002-0156-9
https://doi.org/10.1007/s00153-002-0156-9
http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-211
https://doi.org/10.1007/BFb0037113


S. Urciuoli 17

[20] James McKinna & Robert Pollack (1999): Some Lambda Calculus and Type Theory Formalized. Journal of
Automated Reasoning 23(3), pp. 373–409, doi:10.1023/A:1006294005493.

[21] Tobias Nipkow, Markus Wenzel & Lawrence C. Paulson (2002): Isabelle/HOL: a proof assistant for higher-
order logic. Springer-Verlag, Berlin, Heidelberg, doi:10.1007/3-540-45949-9.

[22] Ulf Norell (2007): Towards a practical programming language based on dependent type theory. Ph.D.
thesis, Chalmers University of Technology. Available at https://www.cse.chalmers.se/~ulfn/papers/
thesis.pdf.

[23] Robert Pollack (1994): The Theory of LEGO. Ph.D. thesis, University of Edinburgh. Available at https:
//era.ed.ac.uk/handle/1842/504.

[24] Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Nielsen, Nicolas Tabareau & Théo Win-
terhalter (2025): Correct and Complete Type Checking and Certified Erasure for Coq, in Coq. J. ACM 72(1),
doi:10.1145/3706056.

[25] Allen Stoughton (1988): Substitution revisited. Theoretical Computer Science 59(3), pp. 317–325,
doi:10.1016/0304-3975(88)90149-1.

[26] Álvaro Tasistro, Ernesto Copello & Nora Szasz (2015): Formalisation in Constructive Type Theory of
Stoughton’s Substitution for the Lambda Calculus. In Mauricio Ayala-Rincón & Ian Mackie, editors: Proc.
LSFA ’14, ENTCS 312, Elsevier, pp. 215–230, doi:10.1016/j.entcs.2015.04.013.

[27] Christian Urban: Sources of the paper: Mechanizing the Metatheory of LF. Available at http://nms.kcl.
ac.uk/christian.urban/Nominal/LF/LF.tgz.

[28] Christian Urban & Stefan Berghofer: Nominal Isabelle. Available at https://isabelle.in.tum.de/
nominal/download.html.

[29] Christian Urban, James Cheney & Stefan Berghofer (2011): Mechanizing the metatheory of LF. ACM Trans.
Comput. Logic 12(2), doi:10.1145/1877714.1877721.

[30] Sebastián Urciuoli (2023): A Formal Proof of the Strong Normalization Theorem for System T in Agda. In
Daniele Nantes-Sobrinho & Pascal Fontaine, editors: Proc. LSFA ’22, 376, Open Publishing Association, p.
81–99, doi:10.4204/eptcs.376.8.

[31] Sebastián Urciuoli, Álvaro Tasistro & Nora Szasz (2020): Strong Normalization for the Simply-Typed
Lambda Calculus in Constructive Type Theory Using Agda. In Cláudia Nalon & Giselle Reis, editors: Proc.
LSFA ’20, ENTCS 351, Elsevier, pp. 187–203, doi:10.1016/j.entcs.2020.08.010.

https://doi.org/10.1023/A:1006294005493
https://doi.org/10.1007/3-540-45949-9
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://era.ed.ac.uk/handle/1842/504
https://era.ed.ac.uk/handle/1842/504
https://doi.org/10.1145/3706056
https://doi.org/10.1016/0304-3975(88)90149-1
https://doi.org/10.1016/j.entcs.2015.04.013
http://nms.kcl.ac.uk/christian.urban/Nominal/LF/LF.tgz
http://nms.kcl.ac.uk/christian.urban/Nominal/LF/LF.tgz
https://isabelle.in.tum.de/nominal/download.html
https://isabelle.in.tum.de/nominal/download.html
https://doi.org/10.1145/1877714.1877721
https://doi.org/10.4204/eptcs.376.8
https://doi.org/10.1016/j.entcs.2020.08.010

	Introduction
	The Framework
	Syntax
	The Choice Function
	Substitutions
	Alpha-conversion
	Adequacy of Alpha-conversion

	Beta-conversion

	The Pure Type Systems
	Basic Properties

	Some Fundamental Metatheory
	Thinning
	Syntactic Validity
	Closure Under Alpha-conversion
	Closure Under Substitution
	Adequacy of the Type System

	Related Work
	Conclusions

