
Chaudhuri, Nantes-Sobrinho (Eds.): International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2025)

EPTCS ??, 2025, pp. 1–17, doi:10.4204/EPTCS.??.??agano, N. Szasz & A. Tasistro

the

ution License.

Dependently Sorted Nominal Signatures

Maribel Fernández

King’s College London, UK

Miguel Pagano

Univ. Nac. Córdoba, Argentina

Nora Szasz Álvaro Tasistro

Universidad ORT Uruguay

We investigate an extension of nominal many-sorted signatures in which abstraction has a form of

instantiation, called generalised concretion, as elimination operator (similarly to lambda-calculi).

Expressions are then classified using a system of sorts and sort families that respects alpha-conversion

(similarly to dependently-typed lambda-calculi) but not allowing names to carry abstraction sorts,

thus constituting a first-order dependent sort system. The system can represent forms of judgement

and rules of inference of several interesting calculi. We present rules and properties of the system as

well as experiments of representation, and discuss how it constitutes a basis on which to build a type

theory where raw expressions with alpha-equivalence are given a completely formal treatment.

Keywords: Nominal Terms; Logical Frameworks; Dependent Types.

1 Introduction

We present a generalisation of Pitts’ nominal many-sorted signatures [18], where sorts can now depend

on terms, yielding a dependently sorted system that inherits the distinctive first-order algebraic flavour of

nominal signatures. We show that this system can serve as a basis for a logical framework.

Nominal logic programming languages such as α-Prolog [8] provide support for the specification of

data structures that include bound names and for the formalisation of their properties. Resolution can

be used to prove properties. However, there is no type distinction between solvable/unsolvable goals.

Gabbay et al [12, 13, 14] proposed alternative formulations of nominal systems with meta-variables that

can be used to represent schematic proofs. These systems, termed one-and-a-halfth-level or two-level

calculi, have type systems closer to simply typed lambda calculus. So, for example, one can introduce

signatures for First-Order Logic (FOL) and the type system will ensure that the equality of two terms is

well-typed only when predicated on terms of the sort corresponding to terms of the object language. On

the other hand, again there is no type distinction between theorems and contradictions. To express that

φ is a theorem, one has to construct not a term, but a derivation of φ =⊤ from the axioms of the theory.

Notice that this equality corresponds to a different form of judgement. Besides the ample evidence of

formalisation of mathematics and computer science in Higher-Order Logic (HOL) and Isabelle/HOL,

Bordg, Paulson and Li [4] have shown that sophisticated mathematical constructions can be formalised

in simply typed lambda calculus.

With dependent types one can introduce the type (or sort as we use in this article) Form of well-

formed formulas and a family of sorts D(φ){φ∈Form} of proofs of theorems. Now both well-formedness

and theoremhood of the object language are represented as typing judgements in the meta-language.

In this paper we aim to demonstrate that a quite simple nominal language with dependent sorts can

be used as a logical framework [15]. The nominal foundation introduces a theory of expressions subject

to alpha-conversion, on top of which a system of dependent sorts is built that respects alpha-equivalence.

To this effect, we let names carry sorts of data —but not abstraction (or ”higher-order”) sorts. This yields

a limited form of computation associated to the elimination of abstractions (concretion), that can be

https://dx.doi.org/10.4204/EPTCS.??.??
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Dependently Sorted Nominal Signatures

solved at the level of syntactic meta-definitions. Thus the language becomes a first-order dependent sorts

system. We have developed several examples showing its ability to represent binding structures: First

Order Logic, Lambda Calculi and Higher-Order Logic. In this paper we show some of these, all treated

employing a shallow-encoding strategy in which the object-language substitution is directly implemented

with our concretion operation. In addition, a deep encoding of the pure Lambda Calculus is shown to

allow the formulation of an alpha-structural induction principle as described and justified in [18]. We

deem this example as opening a path for extending the present system with full rules of computation (i.e.

possibly recursive definitions) respecting alpha-conversion, thus yielding a dependent type theory à la

Martin-Löf with a nominal syntactic foundation providing the treatment of binding at the infrastructural

level.

In Section 6 we briefly discuss related work, highlighting the systems that are closer to our approach

and comparing with previous works on dependently sorted first-order signatures [5, 20] as well as de-

pendent type systems based on extensions of the λ -calculus with nominal features [7, 19].

2 Preliminaries

2.1 Simple Nominal Signatures

We start with a review of nominal signatures [22, 18]. Here and in the rest of the article we overline

symbols or phrases to denote sequences of the species corresponding to the overlined entity.

A signature is a triple (S ,A,Σ), where S is a set of basic sorts including data sorts and name sorts;

A is a family of countable infinite sets of names (atoms), indexed by name sorts. Given S and A the

following grammar generates the sorts of terms:

γ ::= a | s | ≪a≫ γ

In this grammar a is a name sort, s is a data sort, and ≪a≫ γ is an abstraction sort. Σ is a set of

declarations of (term-)constructors, each with its arity, i.e. κ : γ → s.

The set of sorted terms for the signature (S ,A,Σ) is given by the following sorting rules:

(atom) a ∈ Aaa : a

t : γ
(constr) κ : γ → s ∈ Σ

κ t : s

t : γ
(abs) a ∈Aa

≪a≫ t :≪a≫ γ

These terms are ground; i.e., terms without meta-variables [22, 9]. As usual in a nominal setting one

introduces the notion of freshness and identifies terms up to alpha-equivalence. The interesting case of

alpha-equivalence is for abstractions, which is defined by means of permutation of the abstracted atom

by a fresh enough one. We omit those definitions here, but analogous notions appear in Section 3.

2.2 Dependent Sorts

Sort Families

We begin by introducing families of sorts indexed over a sort. To this end, we extend signatures to

include sort constructors, i.e., symbols declared as: F : (X : γ)→ data.

In such a declaration, some sorts γ j might certainly depend on preceding parameters Xi : γi with i< j;

this is typical of telescopic structures (e.g., contexts in dependently typed lambda calculi). Each X in the

telescope X : γ is called a parameter; we will use capital letters P,Q,X ,Y, . . . to denote parameters, and

when a parameter is not used in the successive sorts, we shall simply write an underscore, : γi.

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 3

These declarations will as a whole take the place of the category of data sorts in the simple setting laid

out above. To declare non-dependent sorts we use the empty list for (X : γ) and simply write F : data.

The generality now introduced allows us to have data sorts obtained by instantiating data sort constructors

with terms: a sort constructor becomes a sort only when fully applied to arguments of the appropriate

sorts as declared in the signature.

Of course, we will still have term constructors with telescopic parameter structures and result sorts,

i.e. declarations of the form f : (X : γ)→ δ , with δ a data sort depending on the parameters Xi.

We shall also allow abstraction sorts; in our case, however, the sort of the body of an abstraction

term might depend on the abstracted atom. Thus, abstraction sorts carry the name of the atom being

abstracted. We let atoms carry sorts of data, indicating, in a manner to be explained later, the sort of

expressions in which they can be instantiated or concretised.

It is worth remarking that the system is intended to generate a language of ground terms; i.e., terms

with parameters are only used to build declarations, and the targeted judgements are all ground.

Motivating Examples

We begin with FOL as drawn from a natural deduction style presentation. We start by introducing data

sorts for terms and formulas, as follows:

Term : data and Form : data

We will for the moment let Term further unspecified and concentrate on formulas. Each formula has its

potential derivations, which we will represent by introducing a family of sorts:

D : Form→ data

A first simple formula is the one representing falsity, usually called bottom with its elimination rule:

⊥: Form and ⊥e: (: D(⊥), P : Form)→ D(P)

There are no direct (canonical) derivations of ⊥, so we do not introduce any term constructor with target

sort D(⊥). The meaning of the declaration for ⊥e is as follows: one can “instantiate” the parameters

corresponding to the derivation of falsity and the formula P to get a proof term for the formula instantiat-

ing P. A vector of arguments fits the telescope of a constructor if each term of the list has the appropriate

sort. We now go on to consider implication:

⊃: (: Form, : Form)→ Form

Let us consider now its introduction rule; its main parameter must be a derivation of the consequent

(say Q) in which an assumption of a derivation of the antecedent (say P) has been discharged, i.e. made

local. This phenomenon of discharge/locality is naturally represented in our setting by abstraction. More

specifically, the sort of the derivation in question will be an abstraction sort ≪h:D(P)≫ D(Q). How-

ever, a further issue must be considered, namely that the consequent Q can in principle be any term of

sort Form. It could contain (free) atoms whatsoever, in particular h. And this is a possibility we wish

to exclude, because it would result in undesired name capture when forming the abstraction sort above.

Hence the declarations in our system have the sort for the constructor and also a set of freshness condi-

tions, constituting what we call a freshness context; this is how we indicate that the name (atom) h is to

be chosen fresh in the term instantiating Q. We then write:

⊃i: (P : Form,Q : Form, :≪h:D(P)≫ D(Q))→ D(⊃ (P,Q)) ; h#Q

4 Dependently Sorted Nominal Signatures

Notice that in the declaration of ⊃ we omitted the freshness context because it was empty; we will

continue with this practice in the rest of the paper.

Let us now show how to actually prove ϕ ⊃ ϕ , for any formula ϕ . Indeed, D(⊃ (ϕ ,ϕ)) should be

realisable for any term ϕ of sort Form, of course without further assumptions. In an ordinary textbook

presentation of FOL, a schema of derivations would be provided, actually depicting as many concrete

derivations as actual formulas there may be. We proceed in the same way here, i.e. by offering a

schema of judgements provable in our system, that correspond to the desired derivations. Internalising

such schemas requires passing from a language of ground terms to one containing meta-variables, a

possibility yet to be developed. So let by now suppose we have a (ground) term ϕ of sort Form. Thus,

for some appropriate term ?0 we shall actually derive ⊢?0 : D(⊃ (ϕ ,ϕ)). A possible realisation of ?0 is

via the term: ⊃i (ϕ ,ϕ ,≪a:D(ϕ)≫ a). Obviously, given any ϕ , it should be possible to choose a so as

to accomplish the freshness condition indicated above. This is to be checked by the system as explained

later.

The elimination rule for implication is now straightforward:

⊃e: (P : Form,Q : Form, : D(⊃ (P,Q)), : D(P))→ D(Q) ;

We skip the rest of the usual propositional connectives and go straight to the universal quantifier:

∀ : (:≪ : Term≫ Form)→ Form

This shows another methodological point regarding the encoding of object languages in this system:

functions, as e.g. predicates, are uniformly represented as abstractions. We shall have an operation of

atom substitution and attach to each atom the sort of terms that may be substituted for it. The operation

of atom substitution shall be actually subsumed into that of generalised concretion (cf. [17]), to be

introduced later. An atom shall not in any case have an abstraction sort as its sort, thus making the notion

of computation associated to generalised concretion very simple and of a first-order character.

Turning back to the universal quantifier, its introduction rule requires a proof of a generic instance of

the predicate. Here comes the first use of the concretion operator, in this case in its original, simple form

that uses a specific fresh name instead of the (originally mute, unknown) abstracted atom:

∀i : (P :≪ :Term≫ Form, :≪x:Term≫ D(P[x])) → D(∀(P)) ; x#P

Finally, we consider the elimination of ∀, where P[T] below is an instance of generalised concretion. It

corresponds to a simple concretion on a fresh atom followed by a substitution of this atom by T :

∀e : (P :≪ :Term≫ Form,T : Term, : D(∀(P)))→ D(P[T]).

3 Syntax

Building on the above, we propose the following syntax as a basis for a dependently sorted system.

3.1 Grammar

Consider a countably infinite set of name sorts, each one inhabited by a countably infinite set of names

(atoms). Let a, b, c, range over atoms. Let also there be countably infinite sets of parameters X , Y, Z, . . .∈

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 5

X; term constructors, f , g . . . ∈ F; and sort constructors F , G , . . . ∈ C. Following Gabbay’s permuta-

tive convention [11]: a, b range over distinct atoms. The notation t refers to a vector of terms t0, . . . , tn
with n > 0; given a term t ′ and t = t0, . . . , tn, we use t, t ′ to represent the vector t0, . . . , tn, t

′.

Sorts γ and terms t are generated by the grammar below. We will use M to stand for either.

γ ::=F t data sorts

| ≪a : F t≫ γ abstraction sorts

t ::=a atom

|X [t] parameter with term concretions

| f t application

| ≪a : F t≫ t abstraction

Sorts are built using sort constructors or abstractions and can depend on terms, which can be atoms,

parameters, application of a term constructor to a tuple of terms, or the abstraction of an atom on a term.

We say an expression (sort or term) is ground iff it contains no parameters. When a parameter X has no

concretions, we omit the square brackets. As stated earlier, parameters are intended for declarations, as

shown in the previous section, while sorting judgments (i.e., the language generated by the system to be

given in the next section) involve only ground expressions.

3.2 Operations and Relations

We define the action of permutations on sorts and terms. Here, π · t denotes the vector π · t0, . . . ,π · tn.

Definition 1 (Permutation Action). A permutation π is a bijection on the set of atoms, A, with finite

domain. We represent permutations as lists of swappings (a b). The identity permutation is written id.

π ·a , π(a) π· ≪a : F s≫ M ,≪π(a) : F π · s≫ (π ·M)

π · (X [t]), X [π · t] π · f t , f π · t π ·F t , F π · t

To define alpha-equivalence, we first introduce the freshness relation. Call a # M a freshness constraint.

Definition 2 (Freshness Relation). A freshness judgement has the form ⊢ a # M. To derive freshness

judgements we use the following rules. A premise ⊢ a # t is to be expanded as ⊢ a # t0, . . ., ⊢ a # tn.

(atm)#

⊢ a # b

⊢ a # t
(cns)#

⊢ a # F t

⊢ a # t
(app)#

⊢ a # f t

⊢ a # F t
(abaa)

#

⊢ a #≪a : F t≫ M

⊢ a # M ⊢ a # F t
(abab)

#

⊢ a #≪b : F t≫ M

⊢ a # t
(var)#

⊢ a # X [t]

The main difference with respect to the freshness relation for standard nominal terms is the introduc-

tion of new rules (abaa)
#, (abab)

#, (cns)#, and (var)#, the rule for concretion, which checks freshness

only in terms and not in the parameter. As will be commented again later, parameters stand for arbitrary

closed ground terms of the target language.

Definition 3 (Alpha-equivalence Relation). An α-equivalence judgement has the form ⊢ M ≈α N, where

M and N are ground. We introduce now the rules defining this relation. A premise ⊢ s ≈α t, where s and

t must always be of the same size, is to be expanded in an element-wise manner into premises ⊢ si ≈α ti.

6 Dependently Sorted Nominal Signatures

(atm)α

⊢ a ≈α a

⊢ s ≈α t
(cns)α

⊢ F s ≈α F t

⊢ s ≈α t
(app)α

⊢ f s ≈α f t

⊢ F t ≈α F u ⊢ M ≈α M′

(abaa)
α

⊢≪a : F t≫ M ≈α≪a : F u≫ M′

⊢ F t ≈α F u ⊢ M ≈α (a b) ·M′ ⊢ a # M′

(abab)
α

⊢≪a : F t≫ M ≈α≪b : F u≫ M′

This definition of alpha-equivalence generalises the standard one for nominal terms. For simplicity,

we omit a rule for parameters, which is not essential but would facilitate the writing of declarations.

Lemma 1 (Equivariance). If ⊢ a#M then ⊢ π ·a # π ·M. Similarly if ⊢ M ≈α N then ⊢ π ·M ≈α π ·N.

Proof. Straightforward induction.

Freshness is stable by α-equivalence:

Lemma 2. If ⊢ a # M and ⊢ M ≈α N then ⊢ a # N.

Proof. By induction on the freshness relation. Use equivariance.

Lemma 3. ≈α is a congruence.

Proof. Induction on the definition of ≈α .

Definition 4 (Atom Substitution). We write [a 7→ t] for the operation that substitutes the atom a by the

term t. This is defined on expressions as follows:

a [a 7→ t], t b [a 7→ t], b

(f s) [a 7→ t], f (s [a 7→ t]) (F s) [a 7→ t], F (s [a 7→ t])

(X [t]) [a 7→ t ′], X [t [a 7→ t ′]]

(≪a : F t≫ M) [a 7→ t],≪a : F t [a 7→ t]≫ M

(≪b : F t≫ M) [a 7→ t],≪c : F t [a 7→ t]≫ ((b c) ·M) [a 7→ t] (⊢ c # M,⊢ c # t).

Some explanations are in order: to avoid capturing unabstracted atoms, when an atom substitution

acts upon an abstraction or abstraction sort (last case above), a suitable alpha-equivalent representative of

the latter is first chosen. Any implementation of this definition as a recursive function must accommodate

a suitable mechanism for the generation of names; this is most easily achieved by the threading of global

state throughout the function or by the use of a global choice function that returns the next available name.

Atom substitutions work uniformly on alpha-equivalence classes.

Lemma 4. If ⊢ M ≈α N and ⊢ t ≈α u then ⊢ M[a 7→ t]≈α N[a 7→ u]

Proof. Induction on the derivation of ⊢ M ≈α N.

A concretion w[t] is a partial operation: if w is an abstraction ≪a : F s≫ u, then its concretion

to t evaluates to the body of the abstraction, u, where the abstracted atom is substituted by t. If w is

the parameter X (possibly with other concretions suspended in it), the concretion remains “suspended”

(until X is instantiated). Under the sorting system of the next section, concretion of a parameter will be

well-sorted only if the parameter is of an (appropriate) abstraction sort.

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 7

Definition 5 (Concretion). Concretion is a partial operation:

(≪a : F s≫ u)[t] , u [a 7→ t] (X [t])[t ′], X [t, t ′]

Definition 6 (Parameter Instantiation). A parameter instantiation is a finite mapping from parameters

to terms, and it acts on expressions as just grafting (i.e., without a control of capture), subject to the

condition that each parameter to be replaced is in the domain of the instantiation.

4 Sorting judgements

We use five forms of judgements: 1) Well-formedness of signature Σ, formally ⊢ Σ sig-ok (Fig. 1a);

2) Well-formedness of telescopes T under a valid signature, ⊢Σ T tel-ok(Fig. 1b); 3) Well-formedness

of contexts of atoms (Fig. 1c), T ⊢Σ Γ ctx-ok; 4) Well-formedness of sorts (Fig. 1d), T ;Γ ⊢Σ γ sort;

and 5) Well-sortedness of terms (Fig. 1e), T ;Γ ⊢Σ t : γ .

As indicated above, the sorts are either data sorts or abstraction sorts. Data sorts are introduced by

sort constructors F , and these can only introduce data sorts, never an abstraction sort —the latter being

formed exclusively by the binder ≪ : ≫ . Similarly, terms of the data sorts are formed by (term)

constructors f , and terms of abstraction sorts exclusively by the corresponding binder. Signatures are

sequences of declarations of sort and term constructors. As already explained, a declaration specifies the

sorts of the corresponding parameters and a freshness context. These parameter declarations are called

telescopes. The word context is reserved for atom contexts, Γ, necessary to sort abstractions.

As already stated, the intention is that the system is used for generating well-formed ground sorts and

terms. The rules given below define well-formed scripts of declarations (i.e. signatures), which involve

not only ground expressions but also expressions with parameters.

First, notice the use of freshness contexts (∆) in declarations. They involve conditions of the form

a # X , where the atom a is to appear bound in the declaration and X is any parameter of the declaration.

This defines the side condition on well-formedness of the contexts ∆. The rules check the validity of

the freshness conditions whenever a declaration is put into use, i.e. in rules (data) and (constr). There the

constructor employed must be declared in the signature with a telescope T ′ and freshness context ∆, as

stated in the side condition. Then a fresh version of T ′, as well as of ∆, are created by employing new

atoms so as to avoid possible collisions with unabstracted atoms in the expression being checked. We

call this new telescope T ′
, and the new context ∆#. Then it is checked that the tuple t of arguments fits

the telescope T ′
and at the same time the conditions in ∆# are satisfied, with the mentioned parameters

instantiated accordingly by the tuple t —which we write (∆#)t . That a tuple of terms fits a telescope has

the (obvious) meaning that: a) The telescopes and the context are well-formed. b) They are of the same

length. c) Each term has the sort attached to its corresponding parameter, instantiated on the preceding

terms in the tuple.

An equally valid alternative is that the freshness conditions are rather imposed by the system, i.e.

a freshness declaration is to be interpreted as an assumption on part of the user about the employment

of names in the (ground) expressions to be generated. The conditions can be imposed by the system

by generating in each case a sample chosen among all the alpha-equivalent expressions satisfying the

sorting rules that also respects the freshness conditions. For this to work, it is essential that the system is

closed under alpha-equivalence —which will be shown presently— and that the freshness conditions are

only on bound atoms —which is already imposed in the well-formation of declarations.

In the rule (constr) we use the notation ut , which stands for the instantiation of the parameters of the

tuple of terms u with the tuple t.

8 Dependently Sorted Nominal Signatures

Finally, let us remark that, as stated in rule (fun-sig) and (cons-tel), valid telescopes and target sorts

of term constructors cannot depend on (unabstracted) atoms. Also note that in the rules we omit premises

that can be deduced from some explicitly mentioned premise.

(empty-sig)
⊢ 〈〉 sig-ok

⊢Σ T tel-ok
(sort-sig)

{

F 6∈ dom(Σ)

∆ well-formed⊢ Σ,〈F : T → data ; ∆〉 sig-ok

T ; · ⊢Σ F t sort
(fun-sig)

{

f 6∈ dom(Σ)
∆ well-formed⊢ Σ,〈 f : T → F t ; ∆〉 sig-ok

(a) Rules for signatures.

⊢ Σ sig-ok
(empty-tel)

⊢Σ · tel-ok

T ; · ⊢Σ γ sort
(cons-tel) X 6∈ dom(T)

⊢Σ T ,(X : γ) tel-ok

(b) Rules for telescope formation.

⊢Σ T tel-ok
(emp-ctx)

T ⊢Σ · ctx-ok

T ;Γ ⊢Σ F t sort
(cons-ctx) a 6∈ dom(Γ)

T ⊢Σ Γ,(a : F t) ctx-ok

(c) Rules for well-formed contexts.

T ;Γ ⊢Σ t fits T ′
[(∆#)t]

(data)

{

F ∈ dom(Σ)
Σ(F) = T ′ → data;∆T ;Γ ⊢Σ F t sort

T ;Γ ⊢Σ F t sort T ;(Γ,b : F t) ⊢Σ (a b) · γ sort
(abs-*)

{

b 6∈ dom(Γ)
b # γT ;Γ ⊢Σ≪a : F t≫ γ sort

(d) Rules for well-formed sorts.

T ⊢Σ Γ ctx-ok
(atm) a ∈ dom(Γ)

T ;Γ ⊢Σ a : Γ(a)

T ⊢Σ Γ ctx-ok
(var1) X ∈ dom(T)

T ;Γ ⊢Σ X : T (X)

T ;Γ ⊢Σ X [t] :≪a : F s≫ γ T ;Γ ⊢Σ t ′ : F s
(var2)

T ;Γ ⊢Σ X [t, t ′] : γ [a 7→ t ′]

T ;Γ ⊢Σ t fits T ′
[(∆#)t]

(constr)

{

f ∈ dom(Σ)
Σ(f) = T ′ → F u;∆T ;Γ ⊢Σ f t : F (ut)

T ;Γ ⊢Σ F t sort T ;(Γ,b : F t) ⊢Σ (a b) · t : (a b) · γ
(abs)

{

b 6∈ dom(Γ)
b # {t,γ}T ;Γ ⊢Σ≪a : F t≫ t :≪a : F t≫ γ

·;Γ ⊢Σ t : γ
(conv) γ ≈α γ ′

·;Γ ⊢Σ t : γ ′

(e) Rules for well-sorted terms.

Figure 1: Sorting System

Properties of the sorting system

Lemma 5 (Equivariance of sorting). Let J ′ be a permutative variant of the judgement J . If one is

derivable, then the other is also derivable.

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 9

Proof. Direct check on the system by simultaneous induction over all forms of judgments.

Lemma 6 (Closure under alpha conversion).

1. If ·;Γ ⊢Σ γ sort then for every γ ′ such that ⊢ γ ′ ≈α γ , also ·;Γ ⊢Σ γ ′ sort.

2. If ·;Γ ⊢Σ t : γ then for every t ′ such that ⊢ t ′ ≈α t, also ·;Γ ⊢Σ t ′ : γ .

Proof. By induction on the sorting system, essentially using rule (conv) and equivariance.

Since sort inference and alpha-equivalence are decidable, sort-checking is decidable.

Lemma 7 (Decidability). Given a signature Σ, telescope T and context Γ valid under Σ, it is decidable

whether M is a sort or a term of some sort, for any M.

5 Representation of calculi

5.1 First Order Logic

Normally one introduces first-order languages, each one determined by a choice of function and predicate

symbols. This would then call for a specification parameterised on such symbol declarations. While this

kind of parameterisation could be incorporated into the framework, we prefer for now to keep matters

simple and provide a representation of first-order arithmetic. Another choice we make is to represent a

classical version of the logic.

Syntax

Presentation. In the following x represents a variable taken from a denumerable set.

t ::= x | 0 | S t | t1 + t2 | t1 × t2 Terms

ϕ ::= t1 = t2 | ⊥ | ¬ϕ | ϕ1 ⊃ ϕ2 | (∀x)ϕ Formulæ

The notion of free variable for terms and formulae f v(t) and f v(ϕ) are defined as usual.

Let us call expressions (denoted by e) either terms or formulae of the first-order language being con-

sidered. We write ≡ for identity on terms and formulas. This is the congruent-closure of α-conversion,

which in turn is the diagonal on terms and defined by the following rule on formulae:

ϕx
z ≡ ϕ

′y
z

z /∈ f v(ϕ)
(∀x)ϕ ≡ (∀y)ϕ ′

Here ϕx
z is the swapping of the occurrences of x and z in ϕ . Notice ≡ is clearly decidable. Now define

substitution variable by a term on terms and formulas, in the usual way, using the clause:

((∀x)ϕ)[y := t]≡ (∀x)(ϕ [y := t]) x /∈ f v(t ∪{y})

Justification of well-definedness of substitutions is routine, assuming the clause:

ϕ [x := t]≡ ϕ ′[x := t] if ϕ ≡ ϕ ′1

This level of detail is usually not reached in textbook presentations, and actually neither in e.g. [15].

Other alternatives could have been chosen – this one is direct and simple enough.

1This is the same as identifying formulae up to α-conversion, or working on α-classes.

10 Dependently Sorted Nominal Signatures

Encoding. Clearly, we have two sorts of expressions:

Term : data and Form : data

Look now at terms. Each variable xi will be encoded as a (distinct) atom ai (that is to carry the sort

Term). Besides, we introduce constructors and operations:

0 : Term S : (: Term)→ Term

+ : (: Term, : Term)→ Term × : (: Term, : Term)→ Term

As usual, we overload the symbols on the object- and meta-levels. As to formulae:

= : (: Term, : Term)→ Form ⊥ : Form ¬ : (: Form)→ Form

⊃ : (: Form, : Form)→ Form ∀ : (≪ : Term≫ Form)→ Form

Notice that binding in the object language is represented using the abstraction construct of the framework.

Adequacy. Let us call Σ the signature just introduced. For any finite set X of variables x1, . . . ,xn, let

X̂ be a context of our nominal framework (call this NF) containing assumptions ai : Term iff xi ∈ X .

Lemma 8. There is a compositional bijection2 between:

• Terms t of the FOL-calculus and terms t̂ of the NF such that ·; f̂ v(t) ⊢Σ t̂ : Term

• Formulae ϕ of the FOL-calculus and terms ϕ̂ of the NF such that ·; f̂ v(ϕ) ⊢Σ ϕ̂ : Form

Proof. First we define encoding enc as follows, by recursion on FOL-terms (we use ≈ for term identity

in NF, which includes ≈α):

enc(xi)≈ ai enc(t1 = t2)≈ = (enc(t1),enc(t2))

enc(0)≈ 0 enc(⊥)≈ ⊥

enc(St)≈ S(enc(t)) enc(¬ϕ)≈ ¬(enc(ϕ))

enc(t1 + t2)≈ +(enc(t1),enc(t2)) enc(ϕ1 ⊃ ϕ2)≈ ⊃ (enc(ϕ1),enc(ϕ2))

enc(t1 × t2)≈ ×(enc(t1),enc(t2)) enc((∀xi)ϕ)≈ ∀(≪ai : Term≫ enc(ϕ))

Next, we show that e1 ≡ e2 ⇐⇒ · ⊢ enc(e1)≈ enc(e2) (notice that enc is ground for every e, so there’s

no need to consider freshness contexts on the right-hand side).

Define dec, the inverse to enc, as follows:

dec(ai)≡ xi dec(= (t̂1, t̂2))≡ dec(t̂1) = dec(t̂2)

dec(0) ≡ 0 dec(⊥)≡ ⊥

dec(S(t̂))≡ S(dec(t̂)) dec(⊃ (ϕ̂1, ϕ̂2))≡ dec(ϕ̂1)⊃ dec(ϕ̂2)

dec(+(t̂1, t̂2))≡ dec(t̂1)+dec(t̂2) dec(∀(≪ai : Term≫ ϕ̂))≡ (∀xi) dec(ϕ̂)

dec(×(t̂1, t̂2))≡ dec(t̂1)×dec(t̂2)

It follows enc is a bijection with inverse dec. It is straightforward to prove, by induction on terms and

formulae, that the sorting judgments hold using the signature given above.

Compositionality is given by: enc(e[xi:=t])≈ (enc(e))[ai 7→ enc(t)]

2Compositional means that substitution commutes with encoding, as introduced in [15].

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 11

Derivations

Presentation. We choose Natural Deduction. Let contexts Γ of assumptions be finite sets of formulas.

Write Γ,ϕ for Γ∪{ϕ} with ϕ /∈ Γ, and extend f v to contexts in the obvious way.

(ass) ϕ ∈ Γ
Γ ⊢ ϕ

(ρ)
Γ ⊢ t = t

Γ ⊢ t1 = t2 Γ ⊢ ϕ [xi := t1]
(σ)

Γ ⊢ ϕ [xi := t2]

(+0)
Γ ⊢ 0+ t = t

(+S)
Γ ⊢ s(t1)+ t2 = s(t1 + t2)

(×0)
Γ ⊢ 0× t = 0

(×S)
Γ ⊢ s(t1)× t2 = (t1 × t2)+ t2

Γ ⊢ ϕ [x := 0] Γ,ϕ ⊢ ϕ [x := sx]
(ind) x /∈ FV (Γ)

Γ ⊢ ϕ [x := t]

Γ ⊢ ⊥
(⊥e) ϕ ∈ Γ

Γ ⊢ ϕ
Γ,ϕ ⊢ ⊥

(¬ i)
Γ ⊢ ¬ϕ

Γ ⊢ ϕ Γ ⊢ ¬ϕ
(¬ e)

Γ ⊢ ⊥

Γ,¬ϕ ⊢ ⊥
(RAA)

Γ ⊢ ϕ

Γ,ϕ1 ⊢ ϕ2
(⊃i)

Γ ⊢ ϕ1 ⊃ ϕ2

Γ ⊢ ϕ1 ⊃ ϕ2 Γ ⊢ ϕ1
(⊃e)

Γ ⊢ ϕ2

Γ ⊢ ϕ
(∀i) xi /∈ FV (Γ)

Γ ⊢ (∀xi)ϕ

Γ ⊢ (∀x)ϕ
(∀e)

Γ ⊢ ϕ [x := t]

Encoding. Derivations of judgements Γ ⊢ ϕ can be seen as derivations of judgements ϕ proceeding

from assumptions consisting of single formulae, in such a way that the set of assumptions is included in

Γ. We introduce a family of sorts D : Form→ data for classifying these latter derivations.

So each derivation of the formula ϕ will be represented as a term in D(ϕ). The rules of the system

shall be term-formers of these various sorts, in the following way: 1) Assumptions: Each assumption

of formula ϕ shall be represented as a distinct atom h : D(ϕ). These have to be chosen also distinct

from the ones representing free variables of the formulae participating in any derivation. 2) Premises:

are parameters of the corresponding sorts. 3) Discharge: corresponds to binding, i.e., the discharged

assumption(s) are bound to the rule(-occurrence) that discharges it (them). 4) Additional parameters

like terms, must be appropriately declared as parameters of the corresponding constructor. One special

case is variables chosen to be replaced (i.e. in rule σ or (ind)). These are encoded as atoms possibly

appearing in the encoding of the relevant formula. Clearly, in this case the variable is merely a pointer

to a place in the formula where to perform the substitution of the relevant term. Accordingly, we encode

this phenomenon using our abstraction operator of the framework. That is to say that the relevant formula

and the variable in question are encoded as an abstraction.
In the following encoding, we collapse declarations of parameters of the same sort (so, instead of

writing t1 : Term, t2 : Term we write t1, t2 : Term).

ρ : (t : Term)→ D(= (t, t))

+0 : (t : Term)→ D(= (+(0, t), t)) +S : (t1, t2 : Term)→ D(= (+(S(t1), t2)),S(+(t1, t2)))

×0 : (t : Term)→ D(= (×(0, t),0)) ×S : (t1, t2 : Term)→ D(= (×(S(t1), t2)),(+(×(t1, t2), t2)))

σ : (ϕ : ≪ :Term≫ Form, t1, t2 : Term, : D(=(t1, t2)), : D(ϕ [t1]))→ D(ϕ [t2])

ind : (ϕ : ≪ :Term≫ Form,P0 :D(ϕ [0]),

PS: ≪x:Term≫≪ :D(ϕ [x])≫ D(ϕ [S(x)]), t:Term)→ D(ϕ [t]) ; x#ϕ
⊥e : (ϕ : Form, : D(⊥))→ D(ϕ) ¬i : (ϕ :Form, :≪ :D(ϕ)≫ D(⊥))→ D(¬(ϕ))

12 Dependently Sorted Nominal Signatures

¬e : (ϕ : Form, : D(ϕ), : D(¬(ϕ)))→ D(⊥)

⊃i: (ϕ1,ϕ2 : Form, :≪ :D(ϕ1)≫ D(ϕ2))→ D(⊃ (ϕ1,ϕ2))

⊃e: (ϕ1,ϕ2 : Form, : D(⊃ (ϕ1,ϕ2)), : D(ϕ1))→ D(ϕ2)

∀i : (ϕ :≪ :Term≫ Form, :≪x:Term≫ D(ϕ [x]))→ D(∀(ϕ)) ; x#ϕ

∀e : (ϕ :≪ :Term≫ Form, t : Term, : D(∀(ϕ)))→ D(ϕ [t])

Adequacy. To prove adequacy of derivations we need to map derivation trees of judgements Γ ⊢ ϕ to

terms of sort D(ϕ̂) in the framework. These terms are to depend on contexts containing declarations for

atoms of sort Term in ϕ̂ (which correspond to free variables in ϕ) and for atoms corresponding to the

undischarged assumptions of the derivation. These, in turn, must be preceded by declarations of atoms

of sort Term that correspond to free variables of the formulas in Γ. Besides, the atoms corresponding

to the assumptions can be chosen somewhat arbitrarily, as long as they are different enough to ensure

well-formation of the context in question. Thus, for each derivation of judgement Γ ⊢ ϕ and set of atoms

H of size equal to Γ, we can form a context f̂ v(Γ),ΓH , where f̂ v(Γ) is as before (adequacy of terms) and

ΓH associates to each h ∈ H the sort D(ϕ̂) for ϕ a different formula in Γ. We require H disjoint from the

set of atoms declared in f̂ v(Γ). Now we can formulate:

Lemma 9. For each set H of atoms such that |H|= |Γ|, there exists a bijective correspondence between

derivations δ of judgements Γ ⊢ ϕ in FOL and terms δ̂ of NF such that: ·; f̂ v(Γ) ⊢ δ̂ : D(ϕ̂).

Let us make two remarks. First, we are still considering only ground terms of the framework. Second,

we consider identity of derivations in FOL to be given freely by the rules-as-constructors.

Proof. By induction on derivations. We define δ̂ as δenc with parameter H as follows:

Derivation, δ Encoding, δencH(δ) Comment

(ass)
Γ ⊢ ϕ h where (h : D(ϕ̂) ∈ ΓH)

(ρ)
Γ ⊢ t = t ρ(t̂)

δ1

Γ ⊢ t1 = t2

δ2

Γ ⊢ ϕ [xi := t1]
(σ)

Γ ⊢ ϕ [xi := t2]

σ(≪x:Term≫ ϕ̂ , t̂1, t̂2,δencH(δ1),δencH(δ2))

(+0)
Γ ⊢ 0+ t = t +0(t̂) similarly for +S,×0,×S

δ0

Γ ⊢ ϕ [x := 0]
δ1

Γ,ϕ ⊢ ϕ [x := S(x)]
(ind)

Γ ⊢ ϕ [x := t]

ind(≪ai:Term≫ ϕ̂ ,δencH(δ0),

≪ai:Term≫≪h:D(ϕ̂)≫ δencH∪{h}(δ1), t)
h 6∈ H

δ

Γ ⊢ ⊥
(⊥e)

Γ ⊢ ϕ
⊥e(ϕ̂ ,δencH(δ)) similarly for ¬e,⊃e

δ
Γ,ϕ ⊢ ⊥

(¬i)
Γ ⊢ ¬ϕ

¬i(ϕ̂ ,≪h:D(ϕ)≫ δencH∪{h}(δ)) h /∈ H

similarly for RAA,⊃i

δ

Γ ⊢ ϕ
(∀i) xi /∈ f v(Γ)

Γ ⊢ (∀xi)ϕ
∀i(≪ai:Term≫ ϕ̂ ,≪ai:Term≫ δencH(δ))

δ

Γ ⊢ (∀xi)ϕ
(∀e)

Γ ⊢ ϕ [xi := t]
∀e(≪ai:Term≫ ϕ̂ , t̂,δencH(δ))

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 13

Now we show that the typing restriction holds in the framework. We do it for two interesting cases,

namely assumption and induction:

(ass) We need to show f̂ v(Γ),ΓH ⊢ h : D(ϕ̂). But h : D(ϕ̂) is in ΓH by construction, and the whole

context is well-formed by construction too.

(ind) First of all, ≪ai:Term≫ ϕ̂ is of sort ≪ai:Term≫ Form. Also, by induction hypothesis, δencH(δ0)

is of sort D(̂ϕ [xi := 0]) under f̂ v(Γ),ΓH . We get ̂ϕ [x := 0] ≈ ϕ̂[a 7→ 0] ≈ (≪ai:Term≫ ϕ̂)[0] by

Lemma 8. Therefore the second argument for the constructor ind is well-typed. Next, let us check

that ≪ai:Term≫≪h:D(ϕ̂)≫ δencH∪{h}(δ1), has sort ≪ai:Term≫≪h:D(ϕ̂)≫D(̂ϕ [xi := S(xi)]).

Then we know both ϕ̂ ≈ (≪ai:Term≫ ϕ̂)[ai] and ̂ϕ [xi := S(xi)] ≈ ϕ̂[ai 7→ S(ai)] ≈ (≪ai:Term≫
ϕ̂)[S(ai)], as desired.

Clearly, the mapping is one-to-one. The converse is shown by defining a decoding mapping. The idea

is to map a term δ̂ such that ·; f̂ v(Γ) ⊢ δ̂ : D(ϕ̂) for some ϕ̂ such that ·; Γ̂ ⊢ ϕ̂ : Form, to a derivation of

Γ ⊢ ϕ for appropriate Γ.

5.2 Lambda Calculi

The Pure Calculus

Here we give a shallow encoding (see the deep version below). We have to introduce a sort Λ : data for

terms, after which we get the atoms, which in the present version will represent the usual variables of the

calculus. Then it remains to declare:

@ : (: Λ, : Λ)→ Λ (for application) and λ : (:≪ :Λ≫ Λ)→ Λ (for functional abstraction).

Note that β -contraction of redexes, usually denoted by ⊲, is a binary relation to be encoded as:

⊲ : (: Λ, : Λ)→ data

with one rule: β : (B :≪ :Λ≫ Λ,N : Λ)→ ⊲(@(λ (B),N),B[N]),
using the generalised concretion of the framework.

Adequacy. To show the correctness of our encoding of the λ -calculus, we need to prove that we can

map β -reductions s →β t in the λ -calculus to terms of type ⊲(enc(s),enc(t)) in our framework.

Lemma 10. If s, t are λ -terms such that s →β t, i.e., s ≡ (λx.s1)s2 and t ≡ s1[x := s2] then

⊢ β (≪ai:Λ≫ enc(s1),enc(s2)) : ⊲(@(λ (≪ai:Λ≫ enc(s1)),enc(s2)),(≪ai:Λ≫ enc(s1))[enc(s2)].

The Simply Typed Calculi

We give a system in Church’s monomorphic style. We introduce a sort Λ→Type : data for types with

constructors:

ι : Λ→Type — any ground type

⇒ : (: Λ→Type, : Λ→Type)→ Λ→Type — the functional types

Typed terms is a sort family ΛTerm : (: Λ→Type)→ data indexed by types, with constructors:

@ : (α : Λ→Type,β : Λ→Type, : ΛTerm(⇒ (α ,β)), : ΛTerm(α))→ ΛTerm(β)

14 Dependently Sorted Nominal Signatures

λ : (α : Λ→Type,β : Λ→Type, :≪ :ΛTerm(α)≫ ΛTerm(β))→ ΛTerm(⇒ (α ,β))

Contraction gets typed (because generalized concretion of the framework preserves typing):

⊲ : (β : Λ→Type, : ΛTerm(β), : ΛTerm(β))→ data

β : (α : Λ→Type,β : Λ→Type,B :≪ :ΛTerm(α)≫ ΛTerm(β), N : ΛTerm(α))

→ ⊲(β ,@(α ,β ,λ (α ,β ,B),N),B[N])

There is a difficulty with encoding Curry’s style system — which has to do with the representation

of contexts assigning types to variables. Indeed, since variables in our encoding are atoms of sort Λ in

the framework context, we would need to somehow zip the context to a list of Λ→Types. This seems to

call for a deeper embedding.

Given the encoding of first-order logic and the lambda-calculus, it is not surprising that the system

can also encode Higher-Order Logic (omitted due to lack of space). It is worth mentioning that also

versions of dependently typed lambda calculi can be represented.

Deep Embeddings

We show an alternative encoding of the pure lambda-calculus, which corresponds to a so-called deep

embedding, in contrast to the one given at the beginning of this section. The difference has to do fun-

damentally with the status of substitution. Above we have used the atom substitution in the concretion

operator of the framework to directly implement the object language substitution, whereas in the ap-

proach to be now considered, the latter is given an alpha-recursive characterisation.

First we define the set of names without constructors, i.e., only inhabited by atoms, and the set of

terms:

V : sort and Λ : sort

The constructors are defined by:

Var : (: V)→ Λ ; @ : (: Λ, : Λ)→ Λ ; λ : (:≪x:V≫ Λ)→ Λ ;

Induction over lambda-terms is declared as follows:

Λind : (P :≪t:Λ≫ Form,

:≪x:V≫ D(P[Var(x)]),

:≪m:Λ≫≪n:Λ≫≪h1:D(P[m])≫≪h2:D(P[n])≫ P[@(m,n)],

:≪m:Λ≫≪h:D(P[m])≫ D(P[λ (≪z:V≫ m)]),

M : Λ

)→ D(P[M]) ; z#P

Notice the analogy with the principle of alpha-structural induction formulated in [18]. In a similar

manner, substitution can be declared as:

Λsubst : (: Λ, : V, : Λ)→ Λ ;

and axiomatised by the following equations (where Λsubst(M,x,N) stands for M[x := N]):

Λsubst−v :(X : V,N : Λ)→ D(∀(≪x:V≫= (Λsubst(Var(x),X ,N), if(==(x,X),N,Var(x))))) ;

Λsubst−@ :(M1 : Λ,M2 : Λ,X : V,N : Λ)→ D(= (Λsubst(@(M1,M2),X ,N),@(Λsubst(M1,X ,N),Λsubst(M2,X ,N)))) ;

Λsubst−λ :(M : Λ,X : V,N : Λ)→ D(= (Λsubst(λ (≪x:V≫ M),X ,N),λ (≪x:V≫ Λsubst(M,X ,N)) ; x#{N,X}.

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 15

Here an operator == is used to compare names in V, which yields a boolean in the obvious manner.

The set of booleans with the operator if is introduced as usual. With these declarations, we have been

able to construct a derivation for the substitution lemma

(M[x := N])[y := P] = (M[y := P])[[x := N[y := P]] if x 6= y and x#P,

which proceeds by (alpha-structural) induction on M in very much the same way as a pencil-and-paper

proof utilising Barendregt’s variable convention [2].

6 Conclusions and Related Work

One of the best known examples of logical frameworks is LF [15], based on a typed λ -calculus with

dependent types. Several proof assistants based on the use of Higher-Order Abstract Syntax to encode

binders have been implemented (e.g., Beluga [3]). Nominal type theory as a basis for logical frame-

works has been investigated independently by Cheney [6, 7] and Pitts [19] as extensions of a typed λ -

calculus with names, name-abstraction and concretion operators, and name-abstraction types. Although

the extension with nominal features of a dependently typed λ -calculus yields a powerful type theory, the

interaction between name abstraction and functional abstraction is a source of difficulties (see [6] for a

detailed discussion).

We have shown that despite its first-order character, our dependently sorted system can yield a logical

framework where standard languages with binders can be defined and reasoned about. For example, we

have shown how to define an induction principle for λ -terms, taking into account the α-equivalence

relation. Also, the first-order character of the language, which is a consequence of the restriction for

atoms to carry only data sorts, permits a simple definition of computation, actually consisting in simple

syntactic definition at the meta-level. This alleviates somewhat the notions and proofs of adequacy, as

compared e.g. to [15], just as happens with the lambda-free frameworks [1].

Cartmell’s Generalised Algebraic Theories (GAT) [5, 20] also include dependent sorts but lack any

intrinsic binding structure. To facilitate the specification of languages with binders second-order versions

of GATs have been proposed [10, 21, 16], which incorporate binding and capture-avoiding substitution

using free algebras with substitution structure as a model. We adopt a nominal approach: our dependently

sorted system can be seen as an extension of GATs with nominal features, such as notions of fresh names

and name abstraction, as well as name permutations and capture-avoiding substitutions.

The sorting system has some limitations that we will address in future work, such as the fact that in

declarations for term and type constructors the variables cannot have sorts that depend on atoms, which

would be useful to define recursor operators on λ -terms. Allowing for variables depending on terms will

also permit to use them to represent goals to be solved in incomplete terms, as well as schematic deriva-

tions. We also assign great importance to the goal of extending the present framework with recursive

definitions to be used as rules of computation, as in Martin-Löf’s type theory. This would conduct us to

a version of this theory fully founded upon a nominal syntax, with the issues brought about by binding

solved at an infrastructure level.

Acknowledgments

We thank three anonymous referees for their comments that helped us to improve this final version.

This work was partially funded by Agencia Nacional de Investigación e Innovación (ANII), of Uruguay.

Miguel Pagano was partially funded by a research grant from SECyT-UNC.

16 Dependently Sorted Nominal Signatures

References

[1] Robin Adams (2008): Lambda-Free Logical Frameworks. CoRR abs/0804.1879,

doi:10.48550/arXiv.0804.1879. Available at http://arxiv.org/abs/0804.1879.

[2] Henk P. Barendregt (1984): The Lambda Calculus: its Syntax and Semantics (revised ed.). Studies in Logic

and the Foundations of Mathematics 103, North-Holland, doi:10.1016/B978-0-444-87508-2.50006-X.

[3] Olivier Savary Bélanger, Stefan Monnier & Brigitte Pientka (2013): Programming Type-Safe Transfor-

mations Using Higher-Order Abstract Syntax. In Georges Gonthier & Michael Norrish, editors: Certi-

fied Programs and Proofs - Third International Conference, CPP 2013, Melbourne, VIC, Australia, De-

cember 11-13, 2013, Proceedings, Lecture Notes in Computer Science 8307, Springer, pp. 243–258,

doi:10.1007/978-3-319-03545-1 16.

[4] Anthony Bordg, Lawrence C. Paulson & Wenda Li (2022): Simple Type Theory is not too

Simple: Grothendieck’s Schemes Without Dependent Types. Exp. Math. 31(2), pp. 364–382,

doi:10.1080/10586458.2022.2062073.

[5] John Cartmell (1986): Generalised algebraic theories and contextual categories. Ann. Pure Appl. Log. 32,

pp. 209–243, doi:10.1016/0168-0072(86)90053-9.

[6] James Cheney (2009): A Simple Nominal Type Theory. Electr. Notes Theor. Comput. Sci. 228, pp. 37–52.

Available at http://dx.doi.org/10.1016/j.entcs.2008.12.115.

[7] James Cheney (2012): A dependent nominal type theory. Logical Methods in Computer Science 8(1),

doi:10.2168/LMCS-8(1:8)2012.

[8] James Cheney & Christian Urban (2008): Nominal logic programming. ACM Trans. Program. Lang. Syst.

30(5), pp. 26:1–26:47, doi:10.1145/1387673.1387675.

[9] Elliot Fairweather, Maribel Fernández, Nora Szasz & Alvaro Tasistro (2015): Dependent Types for Nominal

Terms with Atom Substitutions. In Thorsten Altenkirch, editor: 13th International Conference on Typed

Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, LIPIcs 38, Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, pp. 180–195, doi:10.4230/LIPICS.TLCA.2015.180.

[10] Marcelo P. Fiore (2008): Second-Order and Dependently-Sorted Abstract Syntax. In: Proceedings of the

Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pitts-

burgh, PA, USA, IEEE Computer Society, pp. 57–68, doi:10.1109/LICS.2008.38.

[11] Murdoch J. Gabbay (2011): Nominal terms and nominal logics: from foundations to meta-mathematics. In:

Handbook of Philosphical Logic, 17, Kluwer, pp. 79–178, doi:10.1007/978-94-007-6600-6 2.

[12] Murdoch J. Gabbay & Aad Mathijssen (2008): Capture-Avoiding Substitution as a Nominal Algebra. Formal

Aspects of Computing 20(4–5), pp. 451–479, doi:10.1007/11921240 14.

[13] Murdoch J. Gabbay & Aad Mathijssen (2008): One-and-a-halfth-order Logic. Journal of Logic and Compu-

tation 18(4), pp. 521–562, doi:10.1093/logcom/exm064.

[14] Murdoch J. Gabbay & Dominic P. Mulligan (2008): One-and-a-halfth Order Terms: Curry-Howard for Incomplete Derivations.

In: Proceedings of 15th Workshop on Logic, Language and Information in Computation (WoLLIC 2008),

Lecture Notes in Artificial Intelligence 5110, Springer, pp. 180–194, doi:10.1007/978-3-540-69937-8 16.

[15] Robert Harper, Furio Honsell & Gordon Plotkin (1987): A Framework for Defining Logics. In: Proceedings

of the 2nd IEEE Symposium on Logic in Computer Science (LICS 1987), IEEE Computer Society Press,

New York, pp. 194–204, doi:10.1145/138027.138060.

[16] Ambrus Kaposi & Szumi Xie (2024): Second-Order Generalised Algebraic Theories: Signatures and First-

Order Semantics. In Jakob Rehof, editor: 9th International Conference on Formal Structures for Computation

and Deduction, FSCD 2024, July 10-13, 2024, Tallinn, Estonia, LIPIcs 299, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, pp. 10:1–10:24, doi:10.4230/LIPICS.FSCD.2024.10.

[17] Andrew M. Pitts (2003): Nominal Logic, A First Order Theory of Names and Binding. Information and

Computation 186(2), pp. 165–193, doi:10.1016/S0890-5401(03)00138-X.

https://doi.org/10.48550/arXiv.0804.1879
http://arxiv.org/abs/0804.1879
https://doi.org/10.1016/B978-0-444-87508-2.50006-X
https://doi.org/10.1007/978-3-319-03545-1_16
https://doi.org/10.1080/10586458.2022.2062073
https://doi.org/10.1016/0168-0072(86)90053-9
http://dx.doi.org/10.1016/j.entcs.2008.12.115
https://doi.org/10.2168/LMCS-8(1:8)2012
https://doi.org/10.1145/1387673.1387675
https://doi.org/10.4230/LIPICS.TLCA.2015.180
https://doi.org/10.1109/LICS.2008.38
http://www.gabbay.org.uk/papers.html#nomtnl
https://doi.org/10.1007/978-94-007-6600-6_2
http://www.gabbay.org.uk/papers.html#capasn-jv
https://doi.org/10.1007/11921240_14
http://www.gabbay.org.uk/papers.html#oneaah-jv
https://doi.org/10.1093/logcom/exm064
http://www.gabbay.org.uk/papers.html#curhid
https://doi.org/10.1007/978-3-540-69937-8_16
https://doi.org/10.1145/138027.138060
https://doi.org/10.4230/LIPICS.FSCD.2024.10
https://doi.org/10.1016/S0890-5401(03)00138-X

M. Fernández, M. Pagano, N. Szasz & A. Tasistro 17

[18] Andrew M. Pitts (2006): Alpha-structural recursion and induction. Journal of the ACM 53(3), pp. 459–506,

doi:10.1145/1147954.1147961.

[19] Andrew M. Pitts, Justus Matthiesen & Jasper Derikx (2014): A Dependent Type Theory with Abstractable

Names. In Mauricio Ayala-Rincón & Ian Mackie, editors: Ninth Workshop on Logical and Semantic Frame-

works, with Applications, LSFA 2014, Brası́lia, Brazil, September 8-9, 2014, Electronic Notes in Theoretical

Computer Science 312, Elsevier, pp. 19–50, doi:10.1016/J.ENTCS.2015.04.003.

[20] Jonathan Sterling (2019): Algebraic Type Theory and Universe Hierarchies. CoRR abs/1902.08848,

doi:10.48550/arXiv.1902.08848.

[21] Taichi Uemura (2021): Abstract and concrete type theories. Ph.D. thesis, Univer-

siteit van Amsterdam, Institute for Logic, Language and Computation. Available at

https://eprints.illc.uva.nl/id/eprint/2195.

[22] Christian Urban, Andrew M. Pitts & Murdoch J. Gabbay (2004): Nominal Unification. Theoretical Computer

Science 323(1–3), pp. 473–497, doi:10.1016/j.tcs.2004.06.016.

https://doi.org/10.1145/1147954.1147961
https://doi.org/10.1016/J.ENTCS.2015.04.003
https://doi.org/10.48550/arXiv.1902.08848
https://eprints.illc.uva.nl/id/eprint/2195
http://www.gabbay.org.uk/papers.html#nomu-jv
https://doi.org/10.1016/j.tcs.2004.06.016

	Introduction
	Preliminaries
	Simple Nominal Signatures
	Dependent Sorts

	Syntax
	Grammar
	Operations and Relations

	Sorting judgements
	Representation of calculi
	First Order Logic
	Lambda Calculi

	Conclusions and Related Work

