
Rabe, Sacerdoti Coen (Eds): LFMTP 2024

EPTCS ??, 2024, pp. 49–63, doi:10.4204/EPTCS.??.4

© T. Traversié

This work is licensed under the

Creative Commons Attribution License.

Proofs for Free in the λ Π-Calculus Modulo Theory

Thomas Traversié

Université Paris-Saclay, CentraleSupélec, MICS
Gif-sur-Yvette, France

Université Paris-Saclay, Inria, CNRS, ENS-Paris-Saclay, LMF
Gif-sur-Yvette, France

thomas.traversie@centralesupelec.fr

Parametricity allows the transfer of proofs between different implementations of the same data struc-

ture. The λ Π-calculus modulo theory is an extension of the λ -calculus with dependent types and

user-defined rewrite rules. It is a logical framework, used to exchange proofs between different proof

systems. We define an interpretation of theories of the λ Π-calculus modulo theory, inspired by para-

metricity. Such an interpretation allows to transfer proofs for free between theories that feature the

notions of proposition and proof, when the source theory can be embedded into the target theory.

1 Introduction

Many proof assistants have been developed during the past decades, such as AGDA, COQ, HOL LIGHT,

ISABELLE, LEAN or MIZAR. All those systems have their own theoretical foundations and proof lan-

guage. If a library of proofs has been formalized in some proof assistant, one would ideally like to

export it automatically to any other proof assistant. That is why the question of the interoperability

between proof systems arises. Exchanging formal proofs between different proof systems strengthen re-

usability, re-checking and preservation of libraries. For this purpose, Cousineau and Dowek developed

the λΠ-calculus modulo theory [8], that combines λ -calculus with dependent types and user-defined

rewrite rules. It is a logical framework, in which theories are defined by typed constants and rewrite

rules, specified by the users. Many theories can be expressed in the λΠ-calculus modulo theory [4], such

as Predicate Logic, Simple Type Theory and the Calculus of Constructions. Most of all, theories from

various proof assistants can be expressed in this logical framework. As a consequence, it can be used

as a common framework for exchanging proofs between proof systems [17]. The λΠ-calculus modulo

theory has been implemented in the concrete language DEDUKTI [1, 14] and in the LAMBDAPI proof

assistant, which features user-friendly proof tactics.

The problem of the exchange of proofs also emerges when it comes to the different implementations

of a same data structure. One would like to share the theorems proved for one implementation to all

the other implementations of the same data structure, without additional efforts. One method to derive

theorems for free is to use parametricity. Reynolds [16] originally introduced an abstraction theorem,

stating that the different implementations of a polymorphic function behave similarly. Wadler [18] used

this result to derive properties satisfied by polymorphic functions, depending on their types. In other

words, all functions of the same abstract type satisfy the same theorems. Bernardy et al. [2, 3] later

extended parametricity to Pure Type Systems. Keller and Lasson [15] investigated parametricity for

the Calculus of Inductive Constructions, the language behind the COQ proof assistant. More recently,

Cohen et al. [7] developed a parametricity framework and implemented TROCQ, a COQ plugin for proof

transfer based on parametricity. The exchange of proofs—the very purpose of the λΠ-calculus modulo

theory—is therefore an important application of the parametricity translations.

http://dx.doi.org/10.4204/EPTCS.??.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

50 Proofs for Free in the λΠ-Calculus Modulo Theory

Transferring databases of proofs is relevant when working with related mathematical structures. For

instance, if we have proved theorems in a theory of natural numbers and we want to use them in a

theory of integers, we would like to export the proofs for non-negative integers. The same issue arises

concerning various mathematical structures and databases of proofs, as we can embed natural numbers

into reals, reals into reals extended with infinity elements, or sets into pointed graphs [5]. It would

therefore be interesting to exchange proofs between theories of the λΠ-calculus modulo theory, when

the source theory can be embedded into the target theory.

Contribution. In this paper, we define an interpretation of theories of the λΠ-calculus modulo theory,

when they feature a prelude encoding of the notions of proposition and proof. Such an interpretation,

inspired by parametricity, applies when we can embed the source theory S into the target theory T. The

interpretation depends on parameters, given by the user for representing each constant of the source

theory by a term in the target theory. We provide the parameters necessary for interpreting the prelude

encoding. We show that if S has an interpretation in T, then the proofs written inside S can be transformed

into proofs written inside T. This interpretation comes with a relative consistency theorem: if T is

consistent, then S is consistent too.

In order to illustrate this interpretation, we embed a theory of natural numbers into a theory of inte-

gers. This example, as well as the parameters for the prelude encoding, are given in DEDUKTI, and are

available at https://github.com/thomastraversie/InterpDK.

Outline of the paper. In Section 2, we give a formal presentation of the λΠ-calculus modulo theory,

and we detail a prelude encoding of the notions of proposition and proof. In Section 3, we define an

interpretation of theories of the λΠ-calculus modulo theory. In particular, we specify the parameters

required for interpreting the prelude encoding. We prove the interpretation theorem and the relative

consistency theorem. At the end, we show how this interpretation can be used to derive theorems for

free, taking the running example of natural numbers and integers.

2 Theories in the λ Π-Calculus Modulo Theory

In this section, we give a formal definition of the syntax and type system of the λΠ-calculus modulo

theory. We present a standard way of expressing the notions of proposition and proof in it—called

prelude encoding—and we emphasize the theories that will be considered in the rest of the paper.

2.1 The λΠ-Calculus Modulo Theory

The Edinburgh Logical Framework [13], also known as λΠ-calculus, is an extension of simply typed

λ -calculus with dependent types. The λΠ-calculus modulo theory [8] is an extension of the Edinburgh

Logical Framework, in which user-defined rewrite rules [9] have been added. Its syntax is given by:

Sorts s ::= TYPE | KIND

Terms t,u,A,B ::= c | x | s | Π(x : A). B | λ (x : A). t | t u

Contexts Γ ::= 〈〉 | Γ,x : A

Signatures Σ ::= 〈〉 | Σ,c : A | Σ, ℓ →֒ r

where c is a constant and x is a variable (ranging over disjoint sets), Π(x : A). B is a dependent product

(simply written A→ B if x does not occur in B), λ (x : A). t is an abstraction, and t u is an application. For

https://github.com/thomastraversie/InterpDK

T. Traversié 51

convenience, λ (x1 : A1). . . .λ (xn : An). t is written λ (x1 : A1) . . . (xn : An). t and Π(x1 : A1). . . .Π(xn : An). B

is written Π(x1 : A1) . . . (xn : An). B. Terms of type TYPE are called types, and terms of type KIND are

called kinds. Signatures and contexts are finite sequences, and are written 〈〉 when empty. The λΠ-

calculus modulo theory is a logical framework, in which Σ is fixed by the users depending on the theory

they are working in. Signatures are composed of typed constants c : A (such that A is a closed term, that

is a term with no free variables) and rewrite rules ℓ →֒ r (such that the head-symbol of ℓ is a constant).

The relation →֒βΣ is the smallest relation, closed by context, such that if t rewrites to u for some rule in Σ

or by β -reduction, then t →֒βΣ u. The conversion ≡βΣ is the reflexive, symmetric, and transitive closure

of the relation →֒βΣ.

⊢ 〈〉
[EMPTY]

⊢ Γ Γ ⊢ A : TYPE

⊢ Γ,x : A
[DECL] x /∈ Γ

⊢ Γ

Γ ⊢ TYPE : KIND
[SORT]

⊢ Γ ⊢ A : s

Γ ⊢ c : A
[CONST] c : A ∈ Σ

⊢ Γ

Γ ⊢ x : A
[VAR] x : A ∈ Γ

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s

Γ ⊢Π(x : A). B : s
[PROD]

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s Γ,x : A ⊢ t : B

Γ ⊢ λ (x : A). t : Π(x : A). B
[ABS]

Γ ⊢ t : Π(x : A). B Γ ⊢ u : A

Γ ⊢ t u : B[x← u]
[APP]

Γ ⊢ t : A ⊢ B : s

Γ ⊢ t : B
[CONV] A≡β Σ B

Figure 1: Typing rules of the λΠ-calculus modulo theory.

The judgment ⊢ Γ means that the context Γ is well-formed, and Γ ⊢ t : A means that t is of type A in

the context Γ. When the context is empty, we simply write ⊢ t : A. The typing rules for the λΠ-calculus

modulo theory are given in Figure 1. The standard weakening rule is admissible.

A signature is a theory when its rewrite rules satisfy certain properties. We write ΛΣ for the set of

terms whose constants belong to Σ.

Definition 1 (Theory). A theory T in the λΠ-calculus modulo theory is given by a signature Σ such that:

1. for each rule ℓ →֒ r ∈ Σ, we have ℓ and r in ΛΣ,

2. →֒βΣ is confluent on ΛΣ,

3. for each rule ℓ →֒ r ∈ Σ, for all context Γ, term A ∈ ΛΣ and substitution θ , if Γ ⊢ ℓθ : A then

Γ ⊢ rθ : A.

Lemma 1. If Γ ⊢ t : A, then either A = KIND or Γ ⊢ A : s for s = TYPE or s = KIND. If Γ ⊢Π(x : A). B : s,

then Γ ⊢ A : TYPE.

2.2 A Prelude Encoding

It is possible to formalize the notions of proposition and proof in the λΠ-calculus modulo theory [4]. In

particular, this encoding—called prelude encoding—gives the possibility to quantify over certain propo-

52 Proofs for Free in the λΠ-Calculus Modulo Theory

sitions through codes, which is not possible inside the standard λΠ-calculus modulo theory. This encod-

ing is defined by the following signature, written Σpre.

Set : TYPE o : Set

El : Set→ TYPE Prf : El o→ TYPE

 d : Π(x : Set). (El x→ Set)→ Set ⇒d : Π(x : El o). (Prf x→ El o)→ El o

El (x d y) →֒Π(z : El x). El (y z) Prf (x⇒d y) →֒ Π(z : Prf x). Prf (y z)

π : Π(x : El o). (Prf x→ Set)→ Set ∀ : Π(x : Set). (El x→ El o)→ El o

El (π x y) →֒Π(z : Prf x). El (y z) Prf (∀ x y) →֒ Π(z : El x). Prf (y z)

We declare the constant Set, which represents the universe of sorts, along with the injection El that maps

terms of type Set to the type of its elements. We define a sort o, such that El o corresponds to the universe

of propositions. The injection Prf maps propositions to the type of its proof. In other words, a term P of

type El o is a proposition, and a term of type Prf P is a proof of P. The infix symbol d (respectively

⇒d) is used to represent dependent function types between terms of type Set (respectively El o). Remark

that the symbols d and⇒d are generalizations of the usual functionality and implication ⇒ in the

case of dependent types. The symbol π (respectively ∀) is used to represent dependent function types

between elements of type El o and Set (respectively Set and El o).

While it is not possible to quantify over TYPE in the λΠ-calculus modulo theory, this encoding allows

to quantify over propositions—objects of type El o—and then inject them into TYPE using Prf . Similarly,

we can quantify over sorts—objects of type Set—and then inject them into TYPE using El.

2.3 Theories with Prelude Encoding

In this paper, we consider theories that feature those basic notions of proposition and proof. More

formally, we take theories of the form T= Σpre∪ΣT, where the user-defined constants c : A ∈ ΣT have to

be expressed in the prelude encoding.

Definition 2 (Theories with prelude encoding). We say that a theory T = Σpre ∪ ΣT is a theory with

prelude encoding when for every c : A ∈ ΣT, we have ⊢ A : TYPE.

The condition guarantees that the user-defined constants of ΣT are indeed encoded in the prelude

encoding. For instance, we cannot define nat : TYPE, but are forced to take nat : Set. Consequently

inside a theory with prelude encoding, the only constants c : A ∈ Σ with A a kind are Set (of type TYPE),

El (of type Set→ TYPE) and Prf (of type El o→ TYPE).

For each rewrite rule ℓ →֒ r ∈ Σ, the head-symbol of ℓ is a constant. It follows that, if Γ ⊢ ℓ : A, then

A cannot be KIND. We thus have Γ ⊢ A : s with s = TYPE or s = KIND. In particular, TYPE cannot occur

in ℓ and r.

Example 1 (Natural numbers). We define a theory with prelude encoding Tn = Σpre ∪Σn for natural

numbers. nat is the sort of natural numbers. We declare two constructors 0n and succn, a relation ≥n,

T. Traversié 53

and an induction principle recn.

nat : Set

0n : El nat

succn : El nat→ El nat

≥n : El nat→ El nat→ El o

ax1
n : Π(x : El nat). Prf (x≥n x)

ax2
n : Π(x : El nat). Prf (succn x≥n x)

ax3
n : Π(x,y,z : El nat). Prf (x ≥n y)→ Prf (y≥n z)→ Prf (x≥n z)

recn : Π(P : El nat→ El o). Prf (P 0n)→
[Π(x : El nat). Prf (P x)→ Prf (P (succn x))]→
Π(x : El nat). Prf (P x)

In this theory, we can prove Π(x : El nat). Prf (x≥n 0n) and Π(x : El nat). Prf (succn x≥n 0n).

Example 2 (Integers). We define a theory with prelude encoding Ti = Σpre∪Σi for integers. int is the sort

of integers. We declare three constructors 0i, succi and predi, a relation ≥i and a generalized induction

principle reci.

int : Set

0i : El int

succi : El int→ El int

predi : El int→ El int

≥i : El int→ El int→ El o

ax1
i : Π(x : El int). Prf (x≥i x)

ax2
i : Π(x : El int). Prf (succi x≥i x)

ax3
i : Π(x,y,z : El int). Prf (x≥i y)→ Prf (y≥i z)→ Prf (x≥i z)

ax4
i : Π(x : El int). Π(P : El int→ El o). Prf (P (succi (predi x)))→ Prf (P x)

ax5
i : Π(x : El int). Π(P : El int→ El o). Prf (P (predi (succi x)))→ Prf (P x)

reci : Π(c : El int)(P : El int→ El o). Prf (P c)→
[Π(x : El int). Prf (x≥i c)→ Prf (P x)→ Prf (P (succi x))]→
Π(x : El int). Prf (x≥i c)→ Prf (P x)

In this theory, we cannot prove Π(x : El int). Prf (x ≥i 0i) and Π(x : El int). Prf (succi x≥i 0i), but we

can prove Π(x : El int). Prf (x≥i 0i)→ Prf (succi x≥i 0i).

3 Interpretation in the λ Π-Calculus Modulo Theory

In this section, we define an interpretation of theories with prelude encoding. To do so, we first define

the interpretation for the terms of the λΠ-calculus modulo theory, and then we extend it to theories with

prelude encoding. Such an interpretation requires external parameters. In particular, we provide the

parameters necessary for interpreting the prelude encoding. We show how the interpretation of a source

theory S in a target theory T can be used to derive in T the theorems proved in S. We conclude with

an example: we provide the formal parameters for interpreting the theory of natural numbers Tn in the

theory of integers Ti.

54 Proofs for Free in the λΠ-Calculus Modulo Theory

3.1 Interpretation of Terms

Intuition. When we interpret the source theory S in the target theory T, we want to represent every

term t of S by a term t∗ in T, such that if t is of type A in S then t∗ is of type A∗ in T. For instance, when

interpreting the theory of natural numbers Tn in the theory of integers Ti, we have to represent El nat

by (El nat)∗. We would like to take (El nat)∗ := Σ(z : El int). Prf (z ≥i 0i). However, the λΠ-calculus

modulo theory does not feature Σ-types, and it is therefore difficult to express (El nat)∗ in Ti.

An alternative is to interpret the type of natural numbers El nat by the type of integers El int, but

we must guarantee that every integer representing a natural number is indeed non-negative. We natu-

rally interpret the sort nat by int, 0n by 0i, succn by succi, and ≥n by ≥i. The interpretation of the

theorem Π(x : El nat). Prf (succn x ≥n 0n) should not be Π(x∗ : El int). Prf (succi x∗ ≥i 0i), which

is generally false for integers. Instead, we must ensure that x∗ is an integer corresponding to a natu-

ral number, meaning that we suppose a proof of Prf (x∗ ≥i 0i). Thus the interpretation of the theorem

Π(x : El nat). Prf (succn x≥n 0n) should be Π(x∗ : El int). Prf (x∗ ≥i 0i)→ Prf (succi x∗ ≥i 0i).

Formal definition. Following this intuition, when interpreting a term t of type A in S by a term t∗ of

type A∗ in T, we must take into account that A∗ is a type that encompasses A, but may be larger than A.

In that respect, we introduce another term t+ of type A+ t∗, where A+ is a predicate asserting that a given

object of type A∗ satisfies the semantic of type A.

The interpretation of every constant c is given by two parameters c∗ and c+. The translation of an

application (t u)∗ is t∗ u∗ u+, since t∗ takes as arguments u∗ but also the witness u+. Similarly, (t u)+ is

given by t+ u∗ u+. If the variable x occurs in t, then x∗ and x+ may occur in t∗ and t+. Hence (λ (x : A). t)∗

is given by λ (x∗ : A∗)(x+ : A+ x∗). t∗ and (λ (x : A). t)+ is given by λ (x∗ : A∗)(x+ : A+ x∗). t+.

The same intuition holds for dependent types (Π(x : A). B)∗. The predicate (Π(x : A). B)+ asserts

that an object f of type (Π(x : A). B)∗ corresponds to the semantic of Π(x : A). B. In other words, for

every x∗ of type A∗ and x+ of type A+ x∗, the term f x∗ x+ should satisfy the predicate B+. When B is

of type TYPE, we take (Π(x : A). B)+ := λ (f : (Π(x : A). B)∗). Π(x∗ : A∗)(x+ : A+ x∗). B+ (f x∗ x+).
However, we cannot do the same when B is of type KIND, because this term would be ill-typed. Indeed,

(Π(x : A). B)∗ has type KIND, while the type of the bound variable f must have type TYPE. To get

around this issue, we introduce metavariables. We write T{X} when the metavariable X occurs in T ,

and we write T{t} for the term obtained when substituting X by t in T . When B has type KIND, we

take (Π(x : A). B)+{X} := Π(x∗ : A∗)(x+ : A+ x∗). B+{X x∗ x+}. Metavariables are only used for this

purpose. In particular, they are always substituted and they never appear in typed terms.

Definition 3 (Interpretation of terms). The interpretation of terms of the λΠ-calculus modulo theory is

given by the function t 7→ t∗ defined inductively by

(x)∗ := x∗ (variable)

(c)∗ := c∗ (parameter)

TYPE∗ := TYPE

KIND∗ := KIND

(t u)∗ := t∗ u∗ u+

(λ (x : A). t)∗ := λ (x∗ : A∗)(x+ : A+ x∗). t∗

(Π(x : A). B)∗ := Π(x∗ : A∗)(x+ : A+ x∗). B∗

T. Traversié 55

and by the function t 7→ t+ defined inductively by

(x)+ := x+ (variable)

(c)+ := c+ (parameter)

TYPE+{X} := X → TYPE

KIND+ := KIND

(t u)+ := t+ u∗ u+

(λ (x : A). t)+ := λ (x∗ : A∗)(x+ : A+ x∗). t+

(Π(x : A). B)+ := λ (f : (Π(x : A). B)∗). Π(x∗ : A∗)(x+ : A+ x∗). B+ (f x∗ x+) if B : TYPE

(Π(x : A). B)+{X} := Π(x∗ : A∗)(x+ : A+ x∗). B+{X x∗ x+} if B : KIND.

where the X is a metavariable. The interpretation is extended to contexts with

〈〉∗,+ := 〈〉
(Γ,x : A)∗,+ := Γ∗,+,x∗ : A∗,x+ : A+ x∗.

When the free variable x occurs in t, then x∗ and x+ may both occur in t∗ and t+. As such, we do

not define distinct translations Γ∗ and Γ+, but a single translation Γ∗,+, such that if (x : A) ∈ Γ then

(x∗ : A∗) ∈ Γ∗,+ and (x+ : A+ x∗) ∈ Γ∗,+.

Parametricity. Remark that our interpretation is intuitively related to the parametricity translation [2].

Using parametricity, the translation (t u)∗ is given by t∗ u∗, the translation (λ (x : A). t)∗ is given by

λ (x∗ : A∗). t∗, and the translation (Π(x : A). B)∗ is given by Π(x∗ : A∗). B∗. In our interpretation, we

focus on embeddings and we want to represent every type A of the source theory by a type A∗ of the

target theory. While Σ-types are well-suited for expressing such A∗, they are not defined in the λΠ-

calculus modulo theory. That is why we have applied a currying operation on Σ-types. We therefore

represent type A using a more general type A∗, and we guarantee that each term of type A∗ representing

a term of type A enjoys the predicate A+. Consequently, the translation (Π(x : A). B)∗ is given by

Π(x∗ : A∗)(x+ : A+ x∗). B∗, the translation (λ (x : A). t)∗ is given by λ (x∗ : A∗)(x+ : A+ x∗). t∗, and the

translation (t u)∗ is given by t∗ u∗ u+. The formal relation between the parametricity translation and our

interpretation remains to be investigated.

3.2 Parameters for the Prelude Encoding

We aim at interpreting a source theory S in a target theory T, when S and T are theories with prelude

encoding. Such an interpretation is parametrized by the terms of T that correspond to the constants of S.

In particular, we have to provide the parameters for the constants of the prelude encoding.

When ⊢ t : A in S, we want to have ⊢ t∗ : A∗ in T. Moreover, we want ⊢ A+ : A∗→ TYPE in T when

A = TYPE. These conditions lead to the definition of Set∗, Set+, El∗, El+, Prf ∗, Prf+ and o∗. When t is

of type Prf p, we need a witness t+ of type (Prf p)+ t∗ asserting that t∗ is indeed a proof of p∗. Since t∗

is of type Prf p∗, it is necessarily a proof of p∗, and we define Prf+ so that we can always choose t+ to

be t∗. The predicate o+ asserts that an object p∗ of type El o is indeed a proposition, so we choose o+ to

be λ (z : El o). z⇒d (λ (x : Prf z). z). Consequently, it is is always possible to find a witness p+ of type

56 Proofs for Free in the λΠ-Calculus Modulo Theory

Prf (o+ p∗), that is Prf p∗→ Prf p∗.

Set∗ := Set

Set+ := λ (x : Set). El x→ El o

o∗ := o

o+ := λ (z : El o). z⇒d (λ (x : Prf z). z)
El∗ := λ (x∗ : Set)(x+ : El x∗→ El o). El x∗

El+ := λ (u∗ : Set)(u+ : El u∗→ El o)(x : El u∗). Prf (u+ x)
Prf ∗ := λ (x∗ : El o)(x+ : Prf (o+ x∗)). Prf x∗

Prf+ := λ (u∗ : El o)(u+ : Prf (o+ u∗))(x : Prf u∗). Prf u∗

Parameters d
∗ and d

+ are defined so that (El (a d b))@≡βΣ (Π(x : El a). El (b x))@ for @∈{∗,+}.

 d
∗ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ Set).

λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). El (b∗ x∗ x+)→ El o).
a∗ d (λ (x

∗ : El a∗). π (a+ x∗) (b∗ x∗))

 d
+ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ Set).

λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). El (b∗ x∗ x+)→ El o).
λ (f : El (a d b)∗).
∀ a∗ (λ (x∗ : El a∗). (a+ x∗)⇒d (λ (x

+ : Prf (a+ x∗)). b+ x∗ x+ (f x∗ x+)))

Parameter⇒d
∗ is defined so that (Prf (a⇒d b))∗ ≡βΣ (Π(x : Prf a). Prf (b x))∗. Because the condition

(Prf (a⇒d b))+ ≡βΣ (Π(x : Prf a). Prf (b x))+ holds regardless of the definition of ⇒d
+, we choose

⇒d
+ so that ⊢⇒d

+ : (Π(a : El o). (Prf a→ El o)→ El o)+ ⇒d
∗.

⇒d
∗ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ El o).

λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). Prf (o+ (b∗ x∗ x+))).
a∗⇒d (λ (x

∗ : Prf a∗). a∗⇒d (b∗ x∗))

⇒d
+ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ El o).

λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). Prf (o+ (b∗ x∗ x+))).
λ (p : Prf (a⇒d b)∗). p

Parameters π∗ and π+ are defined so that (El (π a b))@ ≡βΣ (Π(x : Prf a). El (b x))@ for @ ∈ {∗,+}.

π∗ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ Set).
λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). El (b∗ x∗ x+)→ El o).
π a∗ (λ (x∗ : Prf a∗). π a∗ (b∗ x∗))

π+ := λ (a∗ : El o)(a+ : Prf (o+ a∗))(b∗ : Π(x∗ : Prf a∗). Prf a∗→ Set).
λ (b+ : Π(x∗ : Prf a∗)(x+ : Prf a∗). El (b∗ x∗ x+)→ El o).
λ (f : El (π a b)∗).
a∗⇒d (λ (x∗ : Prf a∗). a∗⇒d (λ (x

+ : Prf a∗). b+ x∗ x+ (f x∗ x+)))

Parameter ∀∗ is defined so that (Prf (∀ a b))∗ ≡βΣ (Π(x : El a). Prf (b x))∗. Because the condition

(Prf (∀ a b))+ ≡βΣ (Π(x : El a). Prf (b x))+ holds regardless of the definition of ∀+, we choose ∀+ so

that ⊢ ∀+ : (Π(a : Set). (El a→ El o)→ El o)+ ∀∗.

∀∗ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ El o).
λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). Prf (o+ (b∗ x∗ x+))).
∀ a∗ (λ (x∗ : El a∗). (a+ x∗)⇒d (b

∗ x∗))

T. Traversié 57

∀+ := λ (a∗ : Set)(a+ : El a∗→ El o)(b∗ : Π(x∗ : El a∗). Prf (a+ x∗)→ El o).
λ (b+ : Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). Prf (o+ (b∗ x∗ x+))).
λ (p : Prf (∀ a b)∗). p

The parameters chosen for the constants of the prelude encoding satisfy the expected properties. For any

c : A ∈ Σpre, we have ⊢ c∗ : A∗ and ⊢ c+ : A+ c∗. Moreover, the interpretation respects the conversion

relation, meaning that for each rewrite rule ℓ →֒ r of Σpre, we have both ℓ∗ ≡βΣ r∗ and ℓ+ ≡βΣ r+.

Proposition 1. Let c : A ∈ Σpre.

1. We have ⊢ c∗ : A∗.

2. (a) If ⊢ A : TYPE then ⊢ c+ : A+ c∗.

(b) If ⊢ A : KIND then ⊢ c+ : A+{c∗}.

Proof. By simple verification. The result has been checked in DEDUKTI, see the definitions of the

parameters in the file lo sp.dk1.

Proposition 2. For every ℓ →֒ r ∈ Σpre, we have ℓ∗ ≡βΣ r∗ and ℓ+ ≡βΣ r+.

Proof. We only show the case El (a d b) →֒Π(x : El a). El (b x).

We have (El (a d b))∗ ≡βΣ El (a d b)∗

≡βΣ El (a∗ d (λx∗. π (a+ x∗) (b∗ x∗)))
≡βΣ Π(x∗ : El a∗). El (π (a+ x∗) (b∗ x∗))
≡βΣ Π(x∗ : El a∗)(x+ : Prf (a+ x∗)). El (b∗ x∗ x+)
≡βΣ Π(x∗ : (El a)∗)(x+ : (El a)+ x∗). (El (b x))∗

≡βΣ (Π(x : El a). El (b x))∗

and (El (a d b))+ ≡βΣ λ (f : El (a d b)∗). Prf ((a d b)+ f)
≡βΣ λ (f : El (a d b)∗).

Prf (∀ a∗ (λx∗. (a+ x∗)⇒d (λx+. b+ x∗ x+ (f x∗ x+))))
≡βΣ λ (f : El (a d b)∗). Π(x∗ : El a∗).

Prf ((a+ x∗)⇒d (λx+. b+ x∗ x+ (f x∗ x+)))
≡βΣ λ (f : (El (a d b))∗). Π(x∗ : El a∗)(x+ : Prf (a+ x∗)).

Prf (b+ x∗ x+ (f x∗ x+))
≡βΣ λ (f : (Π(x : El a). El (b x))∗). Π(x∗ : (El a)∗)(x+ : (El a)+ x∗).

(El (b x))+ (f x∗ x+)
≡βΣ (Π(x : El a). El (b x))+.

The result has been checked in DEDUKTI for the four rewrite rules, see the #ASSERT commands in the

file lo sp.dk.

3.3 Interpretation of Theories

The interpretation of a source theory S in a target theory T is given by the parameters c∗ and c+, for each

constant c of Σ. We have provided the parameters for the constants of Σpre, but the parameters for the

constants of ΣS remain to be given by the user.

1All the DEDUKTI files are available at https://github.com/thomastraversie/InterpDK.

https://github.com/thomastraversie/InterpDK

58 Proofs for Free in the λΠ-Calculus Modulo Theory

Definition 4 (Interpretation of theories). Let S and T be two theories with prelude encoding. We say that

S has an interpretation in T when:

1. for each constant c : A ∈ ΣS, we have a term c∗ such that ⊢ c∗ : A∗ in T,

2. for each constant c : A ∈ ΣS, we have a term c+ such that ⊢ c+ : A+ c∗ in T,

3. for each rewrite rule ℓ →֒ r ∈ ΣS, we have ℓ∗ ≡βΣ r∗ and ℓ+ ≡βΣ r+ in T.

Remark that, in the third item, ℓ+ and r+ do not contain metavariables, as we have seen that TYPE

cannot occur in ℓ and r.

If we cannot interpret the rewrite rules of S into conversions in T, we can nonetheless replace the

rewrite rules of S by equational axioms—that is by typed constants—and then interpret such constants

in T. So as to replace user-defined rewrite rules by equational axioms [6], we add an equality in our

signature, and we use functional extensionality, uniqueness of identity proofs, and the congruence of

equality on applications.

The λΠ-calculus modulo theory features substitutions in the type of an application—in the case of

dependent types—and features user-defined rewrite rules. So that the translation of a provable judgment

remains provable, it is important to maintain substitution and conversion through the translations t 7→ t∗

and t 7→ t+. For each variable z occurring in a term t, the two variables z∗ and z+ occur in the translated

terms t∗ and t+. The translation (t[z← w])∗ is thus given by t∗[z∗← w∗][z+← w+].

Proposition 3 (Substitution). Let t and w be two terms and z be a variable. We have:

• (t[z← w])∗ = t∗[z∗← w∗][z+← w+].

• (t[z← w])+ = t+[z∗← w∗][z+← w+].

Proof. By induction on the term t.

Proposition 4 (Conversion). If A≡βΣ B in S, then A∗ ≡βΣ B∗ and A+ ≡βΣ B+ in T.

Proof. We prove the result by induction on the formation of A≡βΣ B.

• We have (λ (x : A). t) u)∗=(λ (x∗ : A∗)(x+ : A+ x∗). t∗) u∗ u+, which β -reduces to t∗[x∗← u∗][x+←
u+], that is (t[x← u])∗ following Proposition 3. Similarly, ((λ (x : A). t) u)+ ≡βΣ (t[x← u])+.

• For each ℓ →֒ r ∈ Σ and any substitution θ , we have ℓ∗ ≡βΣ r∗ by definition and Proposition 2.

Using Proposition 3, we have (ℓθ)∗ = ℓ∗θ∗,+ and (rθ)∗ = r∗θ∗,+, where θ∗,+ is defined so that if

θ substitutes z by w, then θ∗,+ substitutes z∗ by w∗ and z+ by w+. Therefore (ℓθ)∗ = ℓ∗θ∗,+ ≡βΣ

r∗θ∗,+ = (rθ)∗. Similarly, we have (ℓθ)+ = ℓ+θ∗,+ ≡βΣ r+θ∗,+ = (rθ)+.

• For closure by context, we only show the λ -abstraction case. Suppose that λ (x : A). t ≡βΣ λ (x :

B). u derives from A≡βΣ B and t ≡βΣ u. By induction, we have A∗ ≡βΣ B∗, and A+ ≡βΣ B+, and

t∗≡βΣ u∗, and t+ ≡βΣ u+. We derive that λ (x∗ : A∗)(x+ : A+ x∗). t∗ ≡βΣ λ (x∗ : B∗)(x+ : B+ x∗). u∗,

that is (λ (x : A). t)∗ ≡βΣ (λ (x : B). u)∗. Similarly, (λ (x : A). t)+ ≡βΣ (λ (x : B). u)+.

• Reflexivity, symmetry and transitivity are immediate.

We have at hand all the tools allowing us to prove that, when S has an interpretation in T, any provable

judgment in S is interpreted as a provable judgment in T. The first item of the theorem concerns well-

formedness judgments. The second item concerns typing judgments with respect to the translation t 7→ t∗,

and the third item concerns typing judgments with respect to the translation t 7→ t+.

T. Traversié 59

Theorem 1 (Interpretation). Let S and T be two theories with prelude encoding, such that S has an

interpretation in T.

1. If ⊢ Γ in S, then ⊢ Γ∗,+ in T.

2. If Γ ⊢ t : A in S then Γ∗,+ ⊢ t∗ : A∗ in T.

3. (a) If Γ ⊢ t : A and Γ ⊢ A : TYPE in S, then Γ∗,+ ⊢ t+ : A+ t∗ in T.

(b) If Γ ⊢ t : A and Γ ⊢ A : KIND in S, then Γ∗,+ ⊢ t+ : A+{t∗} in T.

(c) If Γ ⊢ A : KIND in S, then for every t such that Γ∗,+ ⊢ t : A∗ in T, we have Γ∗,+ ⊢A+{t} : KIND.

Proof. We proceed by induction on the derivation. We only show the most interesting cases.

• CONST: By induction, we have ⊢ Γ∗,+ and ⊢ A∗ : s∗. Since c : A ∈ Σ, we have ⊢ c∗ : A∗. We derive

Γ∗,+ ⊢ c∗ : A∗ by weakening. If s = TYPE, then ⊢ c+ : A+ c∗ and we derive Γ∗,+ ⊢ c+ : A+ c∗ by

weakening. If s = KIND, then ⊢ c+ : A+{c∗} and we derive Γ∗,+ ⊢ c+ : A+{c∗} by weakening.

• PROD: By induction, we have Γ∗,+ ⊢ A∗ : TYPE, and Γ∗,+ ⊢ A+ : A∗→ TYPE, and Γ∗,+,x∗ : A∗,x+ :

A+ x∗ ⊢ B∗ : s∗. Using PROD, we get Γ∗,+ ⊢Π(x∗ : A∗)(x+ : A+ x∗). B∗ : s∗.

Suppose that s = TYPE. By induction, Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+ : B∗→ TYPE. By weakening,

we have Γ∗,+, f : (Π(x : A). B)∗,x∗ : A∗,x+ : A+ x∗ ⊢ B+ : B∗ → TYPE. Since Γ∗,+, f : (Π(x :

A). B)∗,x∗ : A∗,x+ : A+ x∗ ⊢ B+ (f x∗ x+) : TYPE, we derive Γ∗,+ ⊢ λ (f : (Π(x : A). B)∗). Π(x∗ :

A∗)(x+ : A+ x∗). B+ (f x∗ x+) : (Π(x : A). B)∗ → TYPE, which corresponds to Γ∗,+ ⊢ (Π(x :

A). B)+ : TYPE+{(Π(x : A). B)∗}.

Suppose that s = KIND and that we have Γ∗,+ ⊢ t : (Π(x : A). B)∗. Since Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢
t x∗ x+ : B∗, by induction we get Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+{t x∗ x+} : KIND. We derive Γ∗,+ ⊢
Π(x∗ : A∗)(x+ : A+ x∗). B+{t x∗ x+} : KIND, that is Γ∗,+ ⊢ (Π(x : A). B)+{t} : KIND.

• ABS: By induction, we have Γ∗,+ ⊢ A∗ : TYPE, and Γ∗,+ ⊢ A+ : A∗→ TYPE, and Γ∗,+,x∗ : A∗,x+ :

A+ x∗ ⊢ B∗ : s∗, and Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ t∗ : B∗, . We derive Γ∗,+ ⊢ λ (x∗ : A∗)(x+ : A+ x∗). t∗ :

Π(x∗ : A∗)(x+ : A+ x∗). B∗, that is Γ∗,+ ⊢ (λ (x : A). t)∗ : (Π(x : A). B)∗.

Suppose that s = TYPE. By induction, we have Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+ : B∗ → TYPE and

Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ t+ : B+ t∗. We derive Γ∗,+ ⊢ λ (x∗ : A∗)(x+ : A+ x∗). t+ : Π(x∗ : A∗)(x+ :

A+ x∗). B+ t∗. Using CONV, we conclude that Γ∗,+ ⊢ (λ (x : A). t)+ : (Π(x : A). B)+ (λ (x : A). t)∗.

Suppose that s = KIND. By induction, we have Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ B+{t∗} : KIND and

Γ∗,+,x∗ : A∗,x+ : A+ x∗ ⊢ t+ : B+{t∗}. We derive Γ∗,+ ⊢ λ (x∗ : A∗)(x+ : (A+ x∗)). t+ : Π(x∗ :

A∗)(x+ : A+ x∗). B+{t∗}, that is Γ∗,+ ⊢ (λ (x : A). t)+ : (Π(x : A). B)+{(λ (x : A). t)∗} using CONV.

• APP: By induction, we have Γ∗,+ ⊢ t∗ : Π(x∗ : A∗)(x+ : A+ x∗). B∗, and Γ∗,+ ⊢ u∗ : A∗, and Γ∗,+ ⊢
u+ : A+ u∗. We derive Γ∗,+ ⊢ t∗ u∗ u+ : B∗[x∗← u∗][x+← u+]. Using Proposition 3, we conclude

that Γ∗,+ ⊢ (t u)∗ : (B[x← u])∗.

Suppose that Γ ⊢ Π(x : A). B : TYPE (and thus Γ ⊢ B : TYPE). By induction, we have Γ∗,+ ⊢
t+ : Π(x∗ : A∗)(x+ : A+ x∗). B+ (t∗ x∗ x+). It follows that Γ∗,+ ⊢ t+ u∗ u+ : B+[x∗ ← u∗][x+ ←
u+] (t∗ u∗ u+). Using Proposition 3, we conclude that Γ∗,+ ⊢ (t u)+ : (B[x← u])+ (t u)∗.

Suppose that Γ ⊢ Π(x : A). B : KIND (and thus Γ ⊢ B : KIND). By induction, we have Γ∗,+ ⊢ t+ :

Π(x∗ : A∗)(x+ : A+ x∗). B+{t∗ x∗ x+}. It follows that Γ∗,+ ⊢ t+ u∗ u+ : (B+{t∗ x∗ x+})[x∗ ←
u∗][x+← u+]. Using Proposition 3, we conclude that Γ∗,+ ⊢ (t u)+ : (B[x← u])+{(t u)∗}.

• CONV: We conclude using the induction hypotheses and Proposition 4.

60 Proofs for Free in the λΠ-Calculus Modulo Theory

Given an interpretation of a source theory S in a target theory T, the results proved in S are automat-

ically transported to T. The interpretation of S in T only requires the parameters c∗ and c+ in T for each

user-defined constant c of S. Once we have an interpretation of S in T, it is possible to prove that S is

consistent provided that T is so. In the λΠ-calculus modulo theory, we say that a theory is inconsistent

when we can build a term that takes a proposition and returns one of its proofs, that is when there exists

a term t such that ⊢ t : Π(P : El o). Prf P.

Theorem 2 (Relative consistency). Let S and T be two theories with prelude encoding, such that S has

an interpretation in T. If T is consistent, then S is consistent too.

Proof. Assume that S is inconsistent, meaning that we have a term ⊢ t : Π(P : El o). Prf P. By applying

Theorem 1, we get ⊢ t : Π(P∗ : El o)(P+ : Prf P∗ → Prf P∗). Prf P∗. We take the term t ′ := λ (P∗ :

El o). t P∗ (λ (x : Prf P∗). x) and we have ⊢ t ′ : Π(P∗ : El o). Prf P∗. It follows that T is inconsistent.

3.4 Examples of Interpretation

We illustrate the interpretation with two examples. First, we detail the embedding of the theory of natural

numbers into the theory of integers. This example has been implemented in DEDUKTI. Second, we give

an informal presentation of the embedding of Zermelo set theory into a theory where sets are represented

by graphs. These two examples exemplify the practicality and limitations of this interpretation.

3.4.1 Natural Numbers and Integers

We aim at interpreting the theory of natural numbers Tn in the theory of integers Ti. We intuitively

take nat∗ := int. An integer is a non-negative natural number, so the predicate asserting that an integer

is a natural number is defined by nat+ := λ z. z ≥i 0i. The interpretation of 0n is given by 0∗n := 0i,

and we choose 0+n := ax1
i 0i for the proof of 0∗n ≥i 0i. We take succ∗n := λx∗. λx+. succi x∗ and

succ∗n := λx∗. λx+. ax3
i (succi x∗) x∗ 0i (ax

2
i x∗) x+. For the interpretation of ≥n, we choose ≥∗n:=

λx∗. λx+. λy∗. λy+. x∗ ≥i y∗. Given that ≥n returns a proposition, the parameter ≥+
n must have type

Πx∗. Πx+. Πy∗. Πy+. Prf (x∗ ≥i y∗)→ Prf (x∗ ≥i y∗), which has an immediate inhabitant. The inter-

pretation of ax1
i is given by (ax1

i)
∗ := λx∗. λx+. ax1

i x∗. Since ax1
i returns a proof, and by definition of

Prf+, both (ax1
i)
∗ and (ax1

i)
+ have the same type, so we can take (ax1

i)
+ := (ax1

i)
∗. The parameters for

ax2
i and ax3

i are chosen correspondingly.

When defining the parameter rec∗n, we assume P∗ of type Π(x∗ : El nat∗). Prf (x∗ ≥i 0i)→ El o. We

must apply reci to a predicate of type El nat∗→ El o, which asserts that an integer z is non-negative and

that, given a proof hz of its non-negativity, it holds P∗ z hz. Such a predicate can be encoded using ∀ and

⇒d . At some point in the proof, we want to show P∗ z hz, but we can only derive P∗ z h′z, where hz and

h′z are two proofs of z≥i 0i. To overcome this problem, we suppose proof irrelevance

proof irr : Π(p : El o)(h h′ : Prf p)(Q : Prf p→ El o). Prf (Q h)→ Prf (Q h′)

which states that two proofs of the same proposition are equal.

Using this interpretation of natural numbers into integers, we can derive for free the theorems of

Tn in Ti. For instance, we can show in Tn that ⊢ thm : Π(x : El nat). Prf (succn x ≥n 0n), where thm

is a proof that uses recn, ax1
n, ax2

n and ax3
n. The interpretation of Tn in Ti allows us to directly derive

⊢ thm∗ : Π(x∗ : El int). Prf (x∗ ≥i 0i)→ Prf (succi x∗ ≥i 0i) in Ti.

The complete interpretation of natural numbers into integers has been formalized in DEDUKTI, and

is available in the file nat sp.dk.

T. Traversié 61

3.4.2 Sets and Pointed Graphs

Sets can be represented by a more primitive notion of pointed graphs, such that this encoding satisfies

Zermelo set theory [11]. Pointed graphs are directed graphs with a distinguished node—the root. In

the λΠ-calculus modulo theory, pointed graphs are implemented [5] thanks to sorts graph and node

of type Set. The predicate eta : El graph→ El node→ El node→ El o is such that eta a x y is the

proposition asserting that there is an edge in pointed graph a from node y to node x. The operator

root : El graph→ El node returns the root of a pointed graph, and cr : El graph→ El node→ El graph

is such that cr a x corresponds to the pointed graph a in which the root is now at node x.

The different constructors on sets—unions, pairs, powersets and comprehension—are defined via

rewrite rules using the structure of pointed graphs. At the end, every axiom of Zermelo set theory is

a theorem in the theory of pointed graphs. Hence we can naturally interpret Zermelo set theory in the

theory of pointed graphs. Remark that every pointed graph represents a set. It follows that the predicates

asserting that an object of type El graph is indeed a set are not necessary.

The theory of pointed graphs is more computational than the usual Zermelo set theory. In particular,

it satisfies a normalization theorem in deduction modulo theory [11]. Using such an interpretation, the

theorems proved in Zermelo set theory can be transferred to the theory of pointed graphs.

4 Conclusion

In this paper, we have defined an interpretation of theories of the λΠ-calculus modulo theory with prelude

encoding, given well-suited parameters for interpreting the constants of the source theory. If a source

theory S has an interpretation in a target theory T, then the theorems proved in S come for free in T. At

the end, we obtain a relative consistency result, establishing that the consistency of the theory T entails

the consistency of the theory S.

This interpretation applies when S can be embedded into T. In particular, we allow the interpretation

of a type A of S by a more general type A∗ of T. As a consequence, we ensure that, for every term t of

type A in S, its interpretation t∗ of type A∗ in T indeed satisfies the predicate A+. Such an interpretation

is well-suited when we embed a source theory into a more general target theory, as we have seen with

natural numbers and integers. However, if the target theory encompasses exactly the source theory, then

the translation introduces unnecessary predicates, as we have seen with sets and pointed graphs.

Practical application. The λΠ-calculus modulo theory has been implemented in the DEDUKTI proof

language and in the LAMBDAPI proof assistant. Future work would be to implement this interpretation

in DEDUKTI. It would allow effective proof transfers between different DEDUKTI theories, and would

therefore strengthen the interoperability between proof assistants via DEDUKTI.

Theoretical application. Dowek and Miquel [12] developed a method for interpreting theories of first-

order logic. They showed that this interpretation can be used to prove a relative normalization result for

theories in deduction modulo theory [10], that is first-order logic extended with user-defined rewrite

rules. An application of this paper would be to prove a relative normalization result for the λΠ-calculus

modulo theory. We would therefore be able to show that the encoding of set theory via pointed graphs

in the λΠ-calculus modulo theory [5] satisfies a relative normalization result, just like this encoding in

deduction modulo theory [11] does.

62 Proofs for Free in the λΠ-Calculus Modulo Theory

Acknowledgments

The author is grateful to Valentin Blot, Gilles Dowek and Théo Winterhalter for their insightful feedback

on this work, and thanks the reviewers for their relevant comments.

References

[1] Ali Assaf, Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine Dubois, Frédéric

Gilbert, Pierre Halmagrand, Olivier Hermant & Ronan Saillard (2016): Dedukti: a Logical Framework based

on the λ Π-Calculus Modulo Theory. Manuscript.

[2] Jean-Philippe Bernardy, Patrik Jansson & Ross Paterson (2010): Parametricity and dependent types. In:

ICFP 2010 - 15th ACM SIGPLAN International Conference on Functional Programming, Association for

Computing Machinery, Baltimore, USA, p. 345–356, doi:10.1145/1863543.1863592.

[3] Jean-Philippe Bernardy, Patrik Jansson & Ross Paterson (2012): Proofs for free: Parametricity for dependent

types. Journal of Functional Programming 22(2), p. 107–152, doi:10.1017/S0956796812000056.

[4] Frédéric Blanqui, Gilles Dowek, Emilie Grienenberger, Gabriel Hondet & François Thiré (2023): A modular

construction of type theories. Logical Methods in Computer Science Volume 19, Issue 1, doi:10.46298/

lmcs-19(1:12)2023. Available at https://lmcs.episciences.org/10959.

[5] Valentin Blot, Gilles Dowek & Thomas Traversié (2022): An Implementation of Set Theory with Pointed

Graphs in Dedukti. In: LFMTP 2022 - International Workshop on Logical Frameworks and Meta-Languages

: Theory and Practice, Haı̈fa, Israel. Available at https://inria.hal.science/hal-03740004.

[6] Valentin Blot, Gilles Dowek, Thomas Traversié & Théo Winterhalter (2024): From Rewrite Rules to Axioms

in the λ Π-Calculus Modulo Theory. In: FoSSaCS 2024 - 27th International Conference on Foundations of

Software Science and Computation Structures, Springer Nature Switzerland, Luxembourg, Luxembourg, pp.

3–23, doi:10.1007/978-3-031-57231-9_1.

[7] Cyril Cohen, Enzo Crance & Assia Mahboubi (2024): Trocq: Proof Transfer for Free, With or Without

Univalence. In: ESOP 2024 - 33rd European Symposium on Programming, Springer Nature Switzerland,

Luxembourg, Luxembourg, pp. 239–268, doi:10.1007/978-3-031-57262-3_10.

[8] Denis Cousineau & Gilles Dowek (2007): Embedding Pure Type Systems in the Lambda-Pi-Calculus Mod-

ulo. In: TLCA 2007 - 8th International Conference on Typed Lambda Calculi and Applications, Springer

Berlin Heidelberg, Paris, France, pp. 102–117, doi:10.1007/978-3-540-73228-0_9.

[9] Nachum Dershowitz & Jean-Pierre Jouannaud (1991): Rewrite Systems. In: Handbook of Theoretical Com-

puter Science, Volume B: Formal Models and Sematics, doi:10.1016/B978-0-444-88074-1.50011-1.

[10] Gilles Dowek, Thérèse Hardin & Claude Kirchner (2003): Theorem Proving Modulo. Journal of Automated

Reasoning 31, pp. 33–72, doi:10.1023/A:1027357912519.

[11] Gilles Dowek & Alexandre Miquel (2007): Cut elimination for Zermelo set theory. Manuscript.

[12] Gilles Dowek & Alexandre Miquel (2007): Relative normalization. Available at https://arxiv.org/

abs/2310.20248. Manuscript.

[13] Robert Harper, Furio Honsell & Gordon Plotkin (1993): A Framework for Defining Logics. Journal of the

ACM 40(1), p. 143–184, doi:10.1145/138027.138060.

[14] Gabriel Hondet & Frédéric Blanqui (2020): The New Rewriting Engine of Dedukti. In: FSCD 2020 - 5th

International Conference on Formal Structures for Computation and Deduction, 167, Paris, France, p. 16,

doi:10.4230/LIPIcs.FSCD.2020.35. Available at https://inria.hal.science/hal-02981561.

[15] Chantal Keller & Marc Lasson (2012): Parametricity in an Impredicative Sort. In: CSL 2012 - 26th

EACSL Annual Conference on Computer Science Logic, 16, Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, Fontainebleau, France, pp. 381–395, doi:10.4230/LIPIcs.CSL.2012.381. Available at https://

drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381.

https://doi.org/10.1145/1863543.1863592
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.46298/lmcs-19(1:12)2023
https://doi.org/10.46298/lmcs-19(1:12)2023
https://lmcs.episciences.org/10959
https://inria.hal.science/hal-03740004
https://doi.org/10.1007/978-3-031-57231-9_1
https://doi.org/10.1007/978-3-031-57262-3_10
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1016/B978-0-444-88074-1.50011-1
https://doi.org/10.1023/A:1027357912519
https://arxiv.org/abs/2310.20248
https://arxiv.org/abs/2310.20248
https://doi.org/10.1145/138027.138060
https://doi.org/10.4230/LIPIcs.FSCD.2020.35
https://inria.hal.science/hal-02981561
https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.381

T. Traversié 63

[16] John C. Reynolds (1983): Types, Abstraction and Parametric Polymorphism. In: Information Processing 83

- IFIP 9th World Computer Congress, North-Holland/IFIP, Paris, France, pp. 513–523.

[17] François Thiré (2020): Interoperability between proof systems using the logical framework Dedukti. Ph.D.

thesis, Université Paris-Saclay. Available at https://hal.science/tel-03224039.

[18] Philip Wadler (1989): Theorems for free! In: FPCA 1989 - 4th International Conference on Functional

Programming Languages and Computer Architecture, Association for Computing Machinery, New York,

USA, p. 347–359, doi:10.1145/99370.99404.

https://hal.science/tel-03224039
https://doi.org/10.1145/99370.99404

	Introduction
	Theories in the lambdaPi-Calculus Modulo Theory
	The lambdaPi-Calculus Modulo Theory
	A Prelude Encoding
	Theories with Prelude Encoding

	Interpretation in the lambdaPi-Calculus Modulo Theory
	Interpretation of Terms
	Parameters for the Prelude Encoding
	Interpretation of Theories
	Examples of Interpretation
	Natural Numbers and Integers
	Sets and Pointed Graphs

	Conclusion

