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Kuroda’s translation embeds classical first-order logic into intuitionistic logic, through the insertion

of double negations. Recently, Brown and Rizkallah extended this translation to higher-order logic.

In this paper, we adapt it for theories encoded in higher-order logic in the λ Π-calculus modulo theory,

a logical framework that extends λ -calculus with dependent types and user-defined rewrite rules. We

develop a tool that implements Kuroda’s translation for proofs written in DEDUKTI, a proof language

based on the λ Π-calculus modulo theory.

1 Introduction

The λΠ-calculus modulo theory [6] is an extension of simply typed λ -calculus with dependent types and

user-defined rewrite rules. It is a logical framework, meaning that one can express many theories in it—

through the definitions of typed constants and rewrite rules. For instance, it is possible to encode Predi-

cate Logic, Simple Type Theory and the Calculus of Constructions in the λΠ-calculus modulo theory [2].

In particular, theories from other proof systems can be expressed inside this logical framework [20]. The

λΠ-calculus modulo theory has been implemented in the concrete language DEDUKTI [1, 15]. Besides

automatic proof checking, DEDUKTI can be used as a common language to exchange proofs between

different systems. However, if one wants to translate proofs from the classical proof assistant HOL

LIGHT to the intuitionistic proof assistant COQ via DEDUKTI, one must transform classical proofs into

intuitionistic proofs inside DEDUKTI.

Classical logic corresponds to intuitionistic logic extended with the principle of excluded middle

A∨¬A, or equivalently the double-negation elimination ¬¬A⇒A. Classical logic can be embedded

into intuitionistic logic, using double-negations translations. Glivenko [12] proved that any propositional

formula A is provable in classical logic if and only if its double negation ¬¬A is provable in intuition-

istic logic. Kolmogorov [17], Gödel [13], Gentzen [10] and Kuroda [18] developed double-negation

translations A 7→ A∗, which transforms any first-order formula A such that:

(i) if A is provable in classical logic then its translation A∗ is provable in intuitionistic logic,

(ii) A and A∗ are classically equivalent.

More recently, Brown and Rizkallah [4] showed that Kolmogorov’s and Gödel-Gentzen’s translations

cannot be extended to higher-order logic. They proved that, in higher-order logic, Kuroda’s translation

satisfies Property (i), but that it fails in the presence of functional extensionality. In fact [21], Property (i)

holds in the presence of functional extensionality under some specific condition, and Property (ii) holds

when assuming functional extensionality and propositional extensionality.
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Contribution. In this paper, we express Kuroda’s translation for theories of the λΠ-calculus modulo

theory that are encoded in higher-order logic. It is both an encoding—into a logical framework that

features proofs as terms—and an extension—to a logical framework that features dependent types and

user-defined rewrite rules—of Kuroda’s translation. We implement such translation inside CONSTRUKTI,

a tool that translates DEDUKTI files. CONSTRUKTI is tested on a benchmark of a hundred formal proofs.

This tool and this benchmark are available at https://github.com/Deducteam/Construkti.

Outline of the paper. In Section 2, we present the λΠ-calculus modulo theory and we detail an encod-

ing of higher-order logic in it. In Section 3, we define Kuroda’s translation for theories of λΠ-calculus

modulo theory that are encoded in higher-order logic, and we prove the embedding of classical logic into

intuitionistic logic. In Section 4, we implement CONSTRUKTI and test it on DEDUKTI proofs.

2 Higher-Order Logic in the λ Π-Calculus Modulo Theory

In this section, we present the λΠ-calculus modulo theory, and we detail an encoding of higher-order

logic in this logical framework. We characterize the theories considered in the rest of this paper—theories

encoded in higher-order logic.

2.1 The λΠ-Calculus Modulo Theory

The Edinburgh Logical Framework [14], also called λΠ-calculus, is an extension of simply typed λ -

calculus with dependent types. The λΠ-calculus modulo theory [6] corresponds to the Edinburgh Logical

Framework extended with user-defined rewrite rules [7]. Its syntax is given by:

Sorts s ::= TYPE | KIND

Terms t,u,A,B ::= c | x | s | Πx : A. B | λx : A. t | t u

Contexts Γ ::= 〈〉 | Γ,x : A

Signatures Σ ::= 〈〉 | Σ,c : A

Rewrite systems R ::= 〈〉 |R, ℓ →֒ r

where c is a constant and x is a variable (ranging over disjoint sets). TYPE and KIND are two sorts: terms

of type TYPE are called types, and terms of type KIND are called kinds. Πx : A. B is a dependent product

(simply written A→ B if x does not occur in B), λx : A. t is an abstraction, and t u is an application.

Contexts, signatures and rewrite systems are finite sequences, and are written 〈〉 when empty. Signatures

Σ are composed of typed constants c : A, where A is a closed term (that is a term with no free variables).

Rewrite systems R are composed of rewrite rules ℓ →֒ r, where the head symbol of ℓ is a constant. The

λΠ-calculus modulo theory is a logical framework, in which Σ and R are fixed by the users depending

on the logic they are working in. The relation →֒βR is generated by β -reduction and by the rewrite rules

of R. The conversion ≡βR is the reflexive, symmetric, and transitive closure of →֒βR .

The typing rules for the λΠ-calculus modulo theory are given in Figure 1. We write ⊢ Γ when the

context Γ is well formed, and Γ ⊢ t : A when the term t is of type A in the context Γ. For convenience,

〈〉 ⊢ t : A is simply written ⊢ t : A. The standard weakening rule is admissible.

We write Λ(Σ) for the set of terms whose constants belong to Σ. We say that (Σ,R) is a theory when:

(i) for each rule ℓ →֒ r ∈R, both ℓ and r belongs to Λ(Σ), (ii) →֒βR is confluent on Λ(Σ), and (iii) each

https://github.com/Deducteam/Construkti


T. Traversié 37

⊢ 〈〉
[EMPTY]

⊢ Γ Γ ⊢ A : s

⊢ Γ,x : A
[DECL] x /∈ Γ

⊢ Γ

Γ ⊢ TYPE : KIND
[SORT]

⊢ Γ ⊢ A : s

Γ ⊢ c : A
[CONST] c : A ∈ Σ

⊢ Γ

Γ ⊢ x : A
[VAR] x : A ∈ Γ

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s

Γ ⊢Πx : A. B : s
[PROD]

Γ ⊢ A : TYPE Γ,x : A ⊢ B : s Γ,x : A ⊢ t : B

Γ ⊢ λx : A. t : Πx : A. B
[ABS]

Γ ⊢ t : Πx : A. B Γ ⊢ u : A

Γ ⊢ t u : B[x← u]
[APP]

Γ ⊢ t : A Γ ⊢ B : s

Γ ⊢ t : B
[CONV] A≡βR B

Figure 1: Typing rules of the λΠ-calculus modulo theory.

rule ℓ →֒ r ∈R preserves types (for all context Γ, substitution θ , and term A ∈ Λ(Σ), if Γ ⊢ ℓθ : A then

Γ ⊢ rθ : A).

In the λΠ-calculus modulo theory, if Γ ⊢ t : A then Γ is well-formed and A is well-typed. To prove

this, we use the two following properties.

Lemma 1. If Γ ⊢ t : A, then either A = KIND or Γ ⊢ A : s for s = TYPE or s = KIND. If Γ ⊢ Πx : A. B : s,

then Γ ⊢ A : TYPE.

2.2 An Encoding of Higher-Order Logic

It is possible to express higher-order logic in the λΠ-calculus modulo theory [2]. For this, we have

to introduce the notions of proposition and proof. We declare the constant Set, which represents the

universe of sorts, along with the injection El that maps sorts to the type of its elements. The constant

Prop defines the universe of propositions, and the injection Prf maps propositions into the type of its

proofs. In this encoding, we say that P of type Prop is a proposition, that Prf P is a formula and that a

term of type Prf P is a proof of P.

Set : TYPE El : Set→ TYPE  : Set→ Set→ Set o : Set

Prop : TYPE Prf : Prop→ TYPE El (x y) →֒ El x→ El y El o →֒ Prop

The arrow (written infix) is used to represent function types between terms of type Set. Propositions

are considered as objects, using the sort o and the rewrite rule El o →֒ Prop.

Now that we have introduced the notions of proposition and proof, we can define the logical connec-

tives and quantifiers of predicate logic.

⇒ : Prop→ Prop→ Prop ⊤ : Prop ∀ : Πx : Set. (El x→ Prop)→ Prop

∧ : Prop→ Prop→ Prop ⊥ : Prop ∃ : Πx : Set. (El x→ Prop)→ Prop

∨ : Prop→ Prop→ Prop ¬ : Prop→ Prop ⇔ : Prop→ Prop→ Prop

Remark that ∀ and ∃ are polymorphic quantifiers that can be applied to the sort of proposition o. Hence

the higher-order feature directly derives from the rewrite rule El o →֒ Prop.



38 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

In natural deduction, each connective and quantifier comes with an introduction and an elimination

inference rule. The encoding of the notions of proposition and proof is well-suited for representing

inference rules: logical consequences are represented by arrow types, and parameters are represented by

dependent types. For instance, the inference rule for the elimination of disjunction

Γ ⊢ P∨Q Γ,P ⊢ R Γ,Q ⊢ R

Γ ⊢ R

is simply expressed by the constant ore of type

Πp,q : Prop. Prf (p∨q)→Πr : Prop. (Prf p→ Prf r)→ (Prf q→ Prf r)→ Prf r

that can be used for any context Γ. The constants representing the natural deduction rules for the logical

connectives are:

impi : Πp,q : Prop. (Prf p→ Prf q)→ Prf (p⇒q)

impe : Πp,q : Prop. Prf (p⇒q)→ Prf p→ Prf q

andi : Πp : Prop. Prf p→Πq : Prop. Prf q→ Prf (p∧q)

andeℓ : Πp,q : Prop. Prf (p∧q)→ Prf p

ander : Πp,q : Prop. Prf (p∧q)→ Prf q

oriℓ : Πp : Prop. Prf p→Πq : Prop. Prf (p∨q)

orir : Πp,q : Prop. Prf q→ Prf (p∨q)

ore : Πp,q : Prop. Prf (p∨q)→Πr : Prop. (Prf p→ Prf r)→ (Prf q→ Prf r)→ Prf r

negi : Πp : Prop. (Prf p→ Prf ⊥)→ Prf (¬p)

nege : Πp : Prop. Prf (¬p)→ Prf p→ Prf ⊥

For convenience, the semantic of the logical biconditional is encoded through the rewrite rule p⇔ q →֒
(p⇒q)∧ (q⇒ p). The introduction of tautology and the elimination of contradiction are encoded by:

topi : Prf ⊤

bote : Prf ⊥→Πp : Prop. Prf p

The natural deduction rules for the quantifiers are represented by the following constants:

alli : Πa : Set. Πp : El a→ Prop. (Πx : El a. Prf (p x))→ Prf (∀ a p)

alle : Πa : Set. Πp : El a→ Prop. Prf (∀ a p)→ Πx : El a. Prf (p x)

exi : Πa : Set. Πp : El a→ Prop. Πx : El a. Prf (p x)→ Prf (∃ a p)

exe : Πa : Set. Πp : El a→ Prop. Prf (∃ a p)→Πr : Prop. (Πx : El a. Prf (p x)→ Prf r)→ Prf r

All those constants and rewrite rules define the encoding of intuitionistic higher-order logic in the λΠ-

calculus modulo theory. We write Σi
HOL for its constants and RHOL for its rewrite rules. The principle of

excluded middle is represented by:

pem : Πp : Prop. Prf (p∨¬p)

Classical higher-order logic is encoded in the λΠ-calculus modulo theory by the constants Σc
HOL (that is

Σi
HOL along with pem) and by the rewrite rules RHOL.
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Remark that we have decided to encode the natural deduction rules via typed constants, while they

are often expressed via rewrite rules in the λΠ-calculus modulo theory [2]. For instance, both the

introduction and the elimination of implication can be derived from the rewrite rule Prf (p⇒ q) →֒
Prf p→ Prf q. So as to perform the translation from classical logic to intuitionistic logic, the natural

deduction steps must be explicit deduction steps, and cannot be implicit computation steps. That is why

we encode the natural deduction rules with a deep embedding—via typed constants—instead of a shallow

embedding—via rewrite rules.

2.3 Theories Encoded in Higher-Order Logic

When working with the encoding of higher-order logic in the λΠ-calculus modulo theory, it is possible

to mix sorts, propositions and proofs—which is not expected in higher-order logic. For example, propo-

sitions can be inserted in sorts when we have a term of type Prop→ Set, and proofs can be inserted

in propositions when we have a term of type Πp : Prop. Prf p→ Prop. To avoid such behavior, we

introduce five grammars:

κ1 ::= Set | κ1→ κ1

κ2 ::= Prop | El a |Πx : κi. κ2 with i ∈ {1,2}

κ3 ::= Prf p | κ3→ κ3 |Πx : κi. κ3 with i ∈ {1,2}

κ4 ::= TYPE |Πx : κi. κ4 with i ∈ {1,2}

κ5 ::= KIND

The grammar κ3 generates formulas and inference rules. The grammar κ4 generates a subclass of kinds,

and κ5 only generates KIND. We characterize the judgments of the λΠ-calculus modulo theory to ensure

that types and kinds are generated by one of those grammars.

Definition 1 (κ-property). The judgment Γ ⊢ t : A satisfies the κ-property when A∈ κi for some i∈ J1,5K.

The judgment ⊢ Γ satisfies the κ-property when for each (x : A) ∈ Γ we have A ∈ κi for some i ∈ J1,5K.

A derivation satisfies the κ-property when each of its judgments satisfies the κ-property.

Theories encoded in higher-order logic are theories that feature the base higher-order encoding and

in which the user-defined constants satisfy the κ-property.

Definition 2 (Theory encoded in higher-order logic). Let T = (Σ,R) be a theory in the λΠ-calculus

modulo theory. T is encoded in higher-order logic when:

1. Σ = Σk
HOL∪ΣT with k ∈ {i,c} and ΣHOL∩ΣT = /0,

2. R = RHOL∪RT with RHOL∩RT = /0,

3. for every c : A ∈ ΣT , the judgment ⊢ c : A satisfies the κ-property,

4. for every ℓ →֒ r ∈RT , ℓ is neither Prf nor ∀.

The fourth condition will ensure that the translation of a rewrite rule is a well-defined rewrite rule.

Theories encoded in higher-order logic extend higher-order logic with user-defined rewrite rules and

inference rules. The introduction of rewrite rules is part and parcel of deduction modulo theory [8],

while the introduction of inference rules has been developed in superdeduction modulo theory [3, 16].

When considering a theory encoded in higher-order logic, all the user-defined constants satisfy the

κ-property. In that respect, the only way to mix sorts, propositions and proofs is through λ -abstractions.

For instance, (λP : Prop. o) is a term taking as input a proposition and returning a sort. The type
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El ((λP : Prop. o)⊥) mixes propositions and sorts, but it is β -convertible to El o, in which no proposition

occurs. Using this principle, we can transform every derivation of a theory encoded in higher-order logic

into a derivation that satisfies the κ-property, by applying β -reduction on fragments of the derivation.

When a derivation satisfies the κ-property, the rewrite rules ℓ →֒ r with ℓ and r of type A ∈ κ3 cannot be

used. In the rest of this paper and without loss of generality, we only consider derivations that satisfy the

κ-property and rewrite rules ℓ →֒ r with ℓ and r of type A ∈ κi for i 6= 3.

Example 1 (Equational theory). Consider the theory T = (ΣHOL ∪Σeq,RHOL ∪Req), with a polymor-

phic equality symbol = : Πa : Set. El a→ El a→ Prop, and a rewrite rule for the Leibniz principle

Prf (= a x y) →֒ΠP : El a→ Prop. Prf (P x)→ Prf (P y). This theory is encoded in higher-order logic.

We can prove that the equality is reflexive, symmetric and transitive. For instance, the proof of reflexivity

is given by λa : Set. alli a (λx : El a.= a x x) (λx : El a. λP : El a→ Prop. λPx : Prf (P x). Px) which is

of type Πa : Set. Prf (∀ a (λx : El a.= a x x)).

3 Kuroda’s Translation in the λ Π-Calculus Modulo Theory

In this section, we adapt Kuroda’s double-negation translation to the λΠ-calculus modulo theory, when

working in theories encoded in higher-order logic. Kuroda’s translation [18] inserts a double negation in

front of formulas and one after every universal quantifier. More formally, we have AKu := ¬¬AKu where

AKu is defined by induction:

(A⇒B)Ku := AKu⇒BKu (¬A)Ku := ¬AKu PKu := P if P atomic

(A∧B)Ku := AKu∧BKu ⊤Ku :=⊤ (∀x A)Ku := ∀x ¬¬AKu

(A∨B)Ku := AKu∨BKu ⊥Ku :=⊥ (∃x A)Ku := ∃x AKu

This translation embeds classical logic into intuitionistic logic, as for any first-order formula A we have

Γ ⊢ A in classical logic if and only if ΓKu ⊢ AKu in intuitionistic logic.

3.1 Translation of Terms and Theories

When working inside a theory encoded in higher-order logic in the λΠ-calculus modulo theory, every

formula has head symbol Prf . Inserting a double negation in front of every formula is therefore equiv-

alent to inserting it after every Prf symbol. In that respect, we define a single translation t 7→ tKu by

induction on the terms of the λΠ-calculus modulo theory. The translation of Prf is λ p. Prf (¬¬p), and

the translation of the universal quantifier ∀ is λa. λ p. ∀ a (λ z. ¬¬(p z)). The translation of λ -abstraction

λx : A. t is naturally given by λx : AKu. tKu, the one of dependent type Πx : A. B is given by Πx : AKu. BKu

and the one of application t u is defined by tKu uKu.

As we are in the λΠ-calculus modulo theory with the proofs-as-terms paradigm, we have to translate

proofs as well. Kuroda’s translation relies on the fact that the translation of each natural deduction rule is

admissible in intuitionistic logic. For instance, the introduction of implication allows to derive Γ ⊢ P⇒Q

from Γ,P ⊢ Q. In intuitionistic logic, ΓKu ⊢ (P⇒Q)Ku is derivable from ΓKu,PKu ⊢ QKu. In the λΠ-

calculus modulo theory, the constant impi is of type Πp,q : Prop. (Prf p→ Prf q)→ Prf (p⇒ q), and

we can build a term impi
i of type Πp,q : Prop. (Prf ¬¬p→ Prf ¬¬q)→ Prf ¬¬(p⇒ q), that only

depends on the constants representing intuitionistic natural deduction rules. Each constant c of type A

representing a natural deduction rule is translated by the term ci of type AKu, where ci is an intuitionistic

proof term of AKu.
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Definition 3 (Translation of terms). Kuroda’s translation is inductively defined on the terms of the λΠ-

calculus modulo theory by:

xKu := x

cKu :=















λ p. Prf (¬¬p) if c = Prf

λx. λ p. ∀ x (λ z. ¬¬(p z)) if c = ∀
ci if c is a constant representing a natural deduction rule

c otherwise

sKu := s

(λx : A. t)Ku := λx : AKu. tKu

(Πx : A. B)Ku := Πx : AKu. BKu

(t u)Ku := tKu uKu

Proposition 1. For every constant c : A ∈ ΣHOL representing a natural deduction rule, we have ⊢ ci : AKu

in the theory (Σi
HOL,RHOL).

Proof. We have formalized the proof terms ci in DEDUKTI
1. For instance, topi

i is given in Section 4.

As we are not mixing sorts, propositions and proofs, we know that the symbol ∀, the symbol Prf and

the constants representing the natural deduction rules only occur in the grammar κ3. Therefore, any type

A ∈ κi is modified by Kuroda’s translation for i = 3, whereas AKu = A for i 6= 3.

We have defined the translation for terms, and we now want to define it for theories. Intuitively, we

would like to translate a rewrite rule ℓ →֒ r by ℓKu →֒ rKu. However, if the head constant of ℓ is Prf or ∀,
then the head symbol of ℓKu is Prf Ku or ∀Ku, that is a λ -abstraction and not a constant. Hence ℓKu →֒ rKu

may not be a valid rewrite rule in the λΠ-calculus modulo theory. We write ⌊ℓKu⌋ for the term obtained

by β -reducing the head symbol of ℓKu if it is Prf Ku or ∀Ku.

Definition 4. The translation t 7→ tKu is extended to contexts, signatures and rewrite systems by:

〈〉Ku ::= 〈〉
(Γ,x : A)Ku := ΓKu,x : AKu

(Σ,c : A)Ku := ΣKu,c : AKu

(R, ℓ →֒ r)Ku := RKu,⌊ℓKu⌋ →֒ rKu

When translating a theory encoded in higher-order logic, we replace Σc
HOL by Σi

HOL, and we translate

the user-defined signature ΣT and rewrite system RT .

Definition 5 (Translation of theories). Let T =(Σc
HOL∪ΣT ,RHOL∪RT ) be a theory encoded in higher-

order logic. The translation of T is T Ku = (Σi
HOL∪ΣKu

T
,RHOL∪RKu

T
).

Remark that T Ku is a theory. Specifically, rewrite rules ⌊ℓKu⌋ →֒ rKu ∈RKu
T

are always well-defined,

since ℓ is neither Prf nor ∀, and by definition of ⌊ℓKu⌋.

3.2 Embedding Classical Logic into Intuitionistic Logic

We aim at proving that the extension of Kuroda’s translation in the λΠ-calculus modulo theory indeed

embeds classical logic into intuitionistic logic. In other words, we want to show that Γ ⊢ t : A in T

entails ΓKu ⊢ tKu : AKu in T Ku. To do so, we translate the derivations step by step. In particular, when

the CONV rule is used with A≡βR B in T , we want to have AKu ≡βR BKu in T Ku.

1See https://github.com/Deducteam/Construkti/blob/master/kuroda.dk.

https://github.com/Deducteam/Construkti/blob/master/kuroda.dk
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Lemma 2 (Translation of substitutions). (t[z← w])Ku = tKu[z← wKu]

Proof. By induction on the term t. We have (c[z← w])Ku = cKu = cKu[z← wKu] since cKu is a closed

term. Similarly, (s[z← w])Ku = sKu = sKu[z← wKu]. If x 6= z, then (x[z← w])Ku = xKu = xKu[z← wKu].
If x = z, then (x[z←w])Ku = wKu = x[z←wKu] = xKu[z←wKu]. The cases for λ -abstractions, dependent

types, and applications follow from the induction hypotheses.

Lemma 3 (Translation of conversions). If A≡βR B in T , then AKu ≡βR BKu in T Ku.

Proof. By induction on the construction of A≡βR B.

• If ℓ →֒ r in T , then we show (ℓθ)Ku≡βR (rθ)Ku in T Ku for any substitution θ . For ℓ →֒ r ∈RHOL,

we have ℓKu = ℓ and rKu = r, and we use Lemma 2. For ℓ →֒ r ∈RT , we have ⌊ℓKu⌋ →֒ rKu ∈RKu
T

,

which entails that (ℓθ)Ku = ℓKuθKu ≡βR ⌊ℓ
Ku⌋θKu ≡βR rKuθKu = (rθ)Ku by Lemma 2.

• If (λx : A. t) u →֒ t[x← u] in T , then we have ((λx : A. t) u)Ku = (λx : AKu. tKu) uKu , which

β -reduces to tKu[x← uKu], that is (t[x← u])Ku using Lemma 2.

• Closure by context, reflexivity, symmetry, and transitivity are immediate.

Theorem 1 (Translation of judgments). Let T be a theory encoded in higher-order logic.

• If ⊢ Γ in T then ⊢ ΓKu in T Ku.

• If Γ ⊢ t : A in T then ΓKu ⊢ tKu : AKu in T Ku.

Proof. We proceed by induction on the derivation. We present the most interesting cases, the others

follow the definition and the induction hypotheses.

• CONST: By induction we have ⊢ ΓKu and ΓKu ⊢ AKu : sKu in T Ku.

If c : A ∈ ΣT , then c : AKu ∈ ΣKu
T

and we derive ΓKu ⊢ c : AKu using CONST.

Suppose that c = Prf . We simply derive ΓKu ⊢ λ p. Prf (¬¬p) : Prop→ TYPE, that is ΓKu ⊢ Prf Ku :

(Prop→ TYPE)Ku, in T Ku.

Suppose that c = ∀. We simply derive ΓKu ⊢ λx. λ p. ∀ x (λ z. ¬¬(p z)) : Πx : Set. (El x→ Prop)→
Prop, that is ΓKu ⊢ ∀Ku : (Πx : Set. (El x→ Prop)→ Prop)Ku, in T Ku.

Suppose that c is a constant representing a natural deduction rule. Using Proposition 1, we have

ΓKu ⊢ ci : AKu in T Ku, that is ΓKu ⊢ cKu : AKu. In particular, we replace the classical axiom pem :

Πp : Prop. Prf (p∨¬p) by the intuitionistic term pemi : Πp : Prop. Prf (¬¬(p∨¬p)).

Otherwise, c : A ∈ ΣHOL but is not Prf , not ∀, and not a constant representing a natural deduction

rule. Then A does not contain Prf and ∀, so AKu = A. We derive ΓKu ⊢ c : AKu using CONST.

• CONV: By induction we have ΓKu ⊢ tKu : AKu in T Ku and ΓKu ⊢ BKu : sKu in T Ku. From Lemma 3,

we know that AKu ≡βR BKu, and we conclude that ΓKu ⊢ tKu : BKu in T Ku using CONV.

Example 2 (Translated equational theory). The translation of the theory T = (ΣHOL∪Σeq,RHOL∪Req)
of Example 1 is obtained by taking the equality symbol = : Πa : Set. El a→ El a→ Prop (which remains

unchanged), and by transforming the rewrite rule Prf (= a x y) →֒ ΠP : El a→ Prop. Prf (P x)→
Prf (P y) into Prf (¬¬(= a x y)) →֒ ΠP : El a→ Prop. Prf (¬¬(P x))→ Prf (¬¬(P y)). The proof

of reflexivity is now given by λa : Set. alli
i a (λx : El a. = a x x) (λx : El a. λP : El a→ Prop. λPx :

Prf (¬¬(P x)). Px) which is of type Πa : Set. Prf (¬¬(∀ a (λx : El a. ¬¬(= a x x)))).
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3.3 Back to the Original Theory

We have shown that, in the λΠ-calculus modulo theory, Γ ⊢ t : A in T implies ΓKu ⊢ tKu : AKu in T Ku.

We now want to prove the reverse implication: if there exists an intuitionistic proof of AKu in T Ku, then

there exists a classical proof of A in T . To do so, we reason in two steps: first we show that it is possible

to build a proof of A from a proof of AKu in classical logic, and then we show that any result in T Ku can

also be derived in T .

The first step consists in proving that, for any A ∈ κ3, it is possible to derive AKu from A. For this,

we show that any proposition P and its translation PKu are classically equivalent. Such a result is not

necessarily true in higher-order logic. We assume some property, called the Kuroda equivalence.

Definition 6 (Kuroda equivalence). Let Γ be a context, t be a constant or a variable such that Γ ⊢ t :

T1 → . . .→ Tn → Prop, and u1, . . . ,un be terms such that Γ ⊢ ui : Ti. There exists some p such that

Γ ⊢ p : Prf ((t u1 . . . un)
Ku⇔ t u1 . . . un).

The Kuroda equivalence property is derivable from functional extensionality and propositional ex-

tensionality in classical logic [21]. Remark that it is satisfied for the usual logical connectives and

quantifiers. For instance, we have AKu ∧BKu⇔ A∧B and ∀x ¬¬AKu⇔ ∀x A in classical logic. In the

rest of this paper, we work assuming the Kuroda equivalence.

Lemma 4. Any proposition P is β -convertible to a variable x, a constant c, or an application t u1 . . . un

where t is a constant or a variable of type T1 → . . . → Tn → Prop and u1, . . . ,un are terms of type

T1, . . . ,Tn.

The constant c may be ⊤ or ⊥, and the head symbol of the application may be any connective,

quantifier or predicate.

Proposition 2. Let Γ ⊢ P : Prop. In the theory (Σc
HOL∪Σ,RHOL∪R), there exists some proof term mP

such that Γ ⊢ mP : Prf (PKu⇔ P).

Proof. We distinguish cases thanks to Lemma 4.

• Suppose that P is β -convertible to a variable x. We have xKu = x so we build some mx such that

Γ ⊢ mx : Prf (xKu⇔ x). Since P is β -convertible to x, PKu is β -convertible to xKu (see Lemma 3)

and we conclude that Γ ⊢ mx : Prf (PKu⇔ P).

• If P is β -convertible to a constant c, then we are in the case where cKu = c and we proceed similarly.

• Suppose that P is β -convertible to an application t u1 . . . un where t is a constant or a variable. PKu

is β -convertible to (t u1 . . . un)
Ku and we conclude using the Kuroda equivalence.

Lemma 5. Let A∈ κ3 and ℓ be a strict subterm of A. In the theory (Σc
HOL∪Σ,RHOL∪R), for any context

Γ, there exists some t such that Γ ⊢ t : A[ℓ] if and only if there exists some t ′ such that Γ ⊢ t ′ : A[ℓKu].

Proof. We proceed by induction on the term A using the fact that A is generated by κ3.

• Suppose that A = Prf P. If ∀ does not occur in ℓ, then ℓKu = ℓ and P[ℓKu] = P[ℓ], so we directly

conclude. Otherwise, we use Proposition 2 on the right proposition.

• Suppose that A = Πx : B.C with B∈ κ1 or B∈ κ2. If ℓ occurs in B, then by definition B[ℓKu] = B[ℓ],
so ℓKu = ℓ and we directly conclude. Suppose that ℓ only occurs in C and that there exists some t

such that Γ ⊢ t : Πx : B. C[ℓ]. By induction on C with Γ,x : B ⊢ t x : C[ℓ] (obtained by weakening),

we get some t ′C such that Γ,x : B ⊢ t ′C : C[ℓKu]. Therefore, we have Γ ⊢ λx : B. t ′C : Πx : B. C[ℓKu].
We proceed similarly for the reverse implication.



44 Kuroda’s Translation for the λΠ-Calculus Modulo Theory and Dedukti

• Suppose that A = B→C with B,C ∈ κ3. Suppose that we have Γ ⊢ t : B[ℓ]→C[ℓ]. By induction

on B with Γ,x : B[ℓKu] ⊢ x : B[ℓKu], we get some tB such that Γ,x : B[ℓKu] ⊢ tB : B[ℓ]. By induction

on C with Γ,x : B[ℓKu] ⊢ t tB : C[ℓ], we get some t ′C such that Γ,x : B[ℓKu] ⊢ t ′C : C[ℓKu]. We conclude

that Γ ⊢ λx : B[ℓKu]. t ′C : B[ℓKu]→C[ℓKu]. We proceed similarly for the reverse implication.

Lemma 6. Let A ∈ κ3. In the theory (Σc
HOL∪Σ,RHOL ∪R), for any context Γ, there exists some t such

that Γ ⊢ t : A if and only if there exists some t ′ such that Γ ⊢ t ′ : AKu.

Proof. We proceed by induction on the term A using the fact that A is generated by κ3. We use Lemma 5

and the double-negation elimination.

We have shown that it is possible to build a proof of A in T Ku using a proof of AKu and the principle

of excluded middle. The next step is to derive a proof of A in the original theory T . In particular, it

requires to replace each use of ⌊ℓKu⌋ →֒ rKu ∈RKu
T

by a use of ℓ →֒ r ∈RT .

Lemma 7. Let A ∈ κ3 such that Γ ⊢ t : A[ℓKu]. Using ℓ →֒ r, there exists some t ′ such that Γ ⊢ t ′ : A[rKu].

Proof. Using Lemma 5, there exists some t ′ such that Γ ⊢ t ′ : A[ℓ]. Using ℓ →֒ r, we have Γ ⊢ t ′ : A[r].
We use Lemma 5 to obtain some t ′′ such that Γ ⊢ t ′′ : A[rKu].

Lemma 8. Let (Σc
HOL ∪Σ,RHOL ∪RKu) and (Σc

HOL ∪Σ,RHOL∪R) be two theories, abbreviated RKu

and R.

• If ⊢ Γ in RKu then ⊢ Γ in R.

• If Γ ⊢ t : A in RKu and A ∈ κi with i ∈ {1,2,4,5}, then Γ ⊢ t : A in R.

• If Γ ⊢ t : A in RKu and A ∈ κ3, then there exists some t ′ such that Γ ⊢ t ′ : A in R.

Proof. We proceed by induction on the typing derivation. We only present the relevant cases.

• ABS: Suppose that Γ ⊢ A : TYPE and Γ,x : A ⊢ B : s and Γ,x : A ⊢ t : B in RKu. By induction we

have Γ ⊢ A : TYPE and Γ,x : A ⊢ B : s in R.

If B ∈ κi with i ∈ {1,2}, then by induction we have Γ,x : A ⊢ t : B in R, and we derive Γ ⊢ λx :

A. t : Πx : A. B in R.

If B ∈ κ3, then by induction we have Γ,x : A ⊢ t ′ : B in R. We derive Γ ⊢ λx : A. t ′ : Πx : A. B in R.

• APP: Suppose that Γ ⊢ t : Πx : A. B and Γ ⊢ u : A in RKu.

If Πx : A. B ∈ κi with i ∈ {1,2,4}, then by induction we have Γ ⊢ t : Πx : A. B and Γ ⊢ u : A in R.

We derive Γ ⊢ t u : B[x← u] in R.

If Πx : A. B ∈ κ3, then by induction we have Γ ⊢ t ′ : Πx : A. B in R. If A ∈ κi with i ∈ {1,2}, then

by induction we have Γ ⊢ u : A in R, and we derive Γ ⊢ t ′ u : B[x← u] in R. If A ∈ κ3 (x does not

occur in B), then by induction we have Γ ⊢ u′ : A in R, and we conclude that Γ ⊢c t ′ u′ : B.

• CONV: If A≡βR B is obtained using β -conversion or the rewrite rules of RHOL, then we conclude

using the induction hypothesis and the CONV rule. Otherwise, and without loss of generality, we

consider that we only use one rewrite rule of RKu per CONV rule.

Suppose that A ≡βR B is obtained using the rewrite rule ℓKu →֒ rKu ∈RKu. In that case, we have

A=C[ℓKu] and B=C[rKu] (the case A=C[rKu] and B=C[ℓKu] is treated similarly). By assumption,

we have Γ ⊢ t : C[ℓKu] and Γ ⊢C[rKu] : s in RKu.
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If A,B ∈ κi with i ∈ {1,2,4,5}, then ℓKu = ℓ and rKu = r. By induction we have Γ ⊢ t : C[ℓKu] and

Γ ⊢C[rKu] : s in R. We apply CONV with C[ℓ]≡βR C[r].

If A,B ∈ κ3, then by induction we have Γ ⊢ t ′ : C[ℓKu] and Γ ⊢C[rKu] : s in R. We conclude using

Lemma 7.

We now have all the tools to show that, for any intuitionistic proof of AKu in the translated theory

T Ku, there exists a classical proof of A in the original theory T .

Theorem 2. Let T be a theory encoded in higher-order logic and A ∈ κ3. If ΓKu ⊢ t : AKu in T Ku, then

under the Kuroda equivalence there exists some term t ′ such that Γ ⊢ t ′ : A in T .

Proof. We directly have ΓKu ⊢ t : AKu in (Σc
HOL∪ΣKu

T
,RHOL∪RKu

T
).

• By Lemma 6, there exists some t ′ such that ΓKu ⊢ t ′ : A in (Σc
HOL ∪ΣKu

T
,RHOL ∪RKu

T
) and under

the Kuroda equivalence.

• Using Lemma 8, there exists some t ′′ such that ΓKu ⊢ t ′′ : A in (Σc
HOL∪ΣKu

T
,RHOL∪RT ).

• We replace the signature ΣKu
T

by ΣT . For each constant c : C ∈ ΣT with C ∈ κ3, we replace c by tc
(provided by Lemma 6) in t ′′. We obtain ΓKu ⊢ t ′′[c← tc] : A in (Σc

HOL∪ΣT ,RHOL∪RT ), that is

in T . These substitutions work since c cannot occur in a dependent type.

• We replace the context ΓKu by Γ. For each variable x : B ∈ Γ with B ∈ κ3, we replace x by tx
(provided by Lemma 6) in t ′′[c← tc]. We obtain Γ ⊢ t ′′[c← tc][x← tx] : A in T , which achieves

the proof.

The extension of Kuroda’s translation to the λΠ-calculus modulo theory is a generalization of Brown

and Rizkallah’s translation for simple type theory [4]. Indeed, if RT = 〈〉, then we obtain the result in

higher-order logic, at the only difference that proofs are represented by terms.

4 Construkti, an Implementation for Dedukti Proofs

Dedukti. The λΠ-calculus modulo theory has been implemented in the DEDUKTI proof language.

Abstractions λx : A. t are represented by x : A => t, and dependent types Πx : A. B are represented

by x : A -> B. Constants c : A are specified by c : A, prefixed with the keyword def if the constant

can be defined using rewrite rules. Rewrite rules ℓ →֒ r, where x and y are the free variables of ℓ and r,

are represented by [x,y] l --> r. For instance, using the encoding of the notions of proposition and

proof, we can encode the addition on natural numbers via rewrite rules.

nat : Set.

0 : El nat.

S : El nat -> El nat.

def add : El nat -> El nat -> El nat.

[x] add x 0 --> x.

[x, y] add x (S y) --> S (add x y).

Theorems are represented by thm n : T := p, where n is its name, T its statement and p its proof

term. For checking that p is indeed a proof of T, we can use one of the type checkers of DEDUKTI, for

instance DKCHECK [19] or LAMBDAPI [15].
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Construkti. We have implemented CONSTRUKTI
2 , a tool that performs Kuroda’s translation on DE-

DUKTI proofs. CONSTRUKTI takes as input a DEDUKTI file containing the specification of a user-defined

theory encoded in higher-order logic, as well as proofs in this theory. It returns a DEDUKTI file contain-

ing the specification of the translated theory, as well as the translated proofs.

In this implementation, we insert one double negation after every Prf and ∀ symbols, and we replace

the constants c representing natural deduction rules by the terms ci. For instance, the constant topi of

type Prf ⊤, representing the introduction of tautology, is replaced in the formal proofs by the term topi
i

of type Prf (¬¬⊤). The proof term topi
i relies on the proof of Πp : Prop. Prf (p⇒¬¬p).

top_i : Prf top.

thm prop_double_neg : p : Prop -> Prf (imp p (not (not p)))

:= p => imp_i p (not (not p))

(pP => neg_i (not p) (pNP => neg_e p pNP pP)).

thm top_i_i : Prf (not (not top))

:= imp_e top (not (not top)) (prop_double_neg top) top_i.

So as to obtain readable theorems, we directly β -reduce every application of Prf Ku and ∀Ku.

Benchmark. We have tested CONSTRUKTI on a benchmark of 101 DEDUKTI proofs, available in

the file hol-lib.dk. These proofs encompass results related to connectives and quantifiers, classical

formulas, De Morgan’s laws, polymorphic equality, and basic arithmetic. The proofs are expressed in

propositional, first-order and higher-order logics. This library of proofs includes user-defined rewrite

rules—a feature of the λΠ-calculus modulo theory—and inference rules—thanks to the encoding of the

notions of proposition and proof. We compare in Table 1 the different characteristics of the library: the

number of proofs, the number of classical proofs, the number of results expressed in higher-order logic,

and the number of results that are expressed via admissible inference rules.

Content of Number of ...

the library proofs classical proofs higher-order results admissible inference rules

Basic logic 38 0 15 26

Classical results 12 12 9 3

De Morgan 8 6 4 8

Equality 10 0 6 4

Arithmetic 33 0 0 16

All 101 18 34 57

Table 1: Comparison of the different libraries.

After running CONSTRUKTI, all the translated proofs of the translated theorems typecheck, and are

expressed in intuitionistic logic.

2Available at https://github.com/Deducteam/Construkti.

https://github.com/Deducteam/Construkti
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5 Conclusion

In this paper, we have extended Kuroda’s translation to the theories encoded in higher-logic in the λΠ-

calculus modulo theory, that is λ -calculus extended with dependent types and user-defined rewrite rules.

In this logical framework, proofs are terms following the Curry-Howard correspondence, and have to

be effectively translated. Due to the encoding of the notions of proposition and proof in the λΠ-

calculus modulo theory, we can assume, prove, and translate inference rules. We have implemented

CONSTRUKTI, a tool that transforms DEDUKTI proofs following Kuroda’s translation. Both DEDUKTI

and CONSTRUKTI pave the way for interoperability between classical proof systems—such as HOL

LIGHT or MIZAR—and intuitionistic proof systems—such as COQ, LEAN or AGDA.

Future work. There exist large libraries of proofs in higher-order logic, for instance the HOL LIGHT

standard library. Blanqui [9] recently translated it to COQ via DEDUKTI, taking the excluded middle as

an axiom. Future work would be to obtain an intuitionistic version of the HOL LIGHT standard library,

by applying Kuroda’s translation and CONSTRUKTI.

Related work. Double-negation translations aim at embedding classical logic into intuitionistic logic.

As such, double-negation translations always transform classical proofs into intuitionistic ones, but they

modify the formulas during the process. Proof constructivization aims at transforming classical proofs

into intuitionistic ones without translating the formulas, but such a process does not necessarily succeed.

Cauderlier [5] developed heuristics to constructivize proofs in DEDUKTI, via rewrite systems that try to

remove instances of the principle of excluded middle or of the double-negation elimination. Gilbert [11]

designed a constructivization algorithm for first-order logic, that was tested in DEDUKTI and works in

practice for large fragments of first-order logic.
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