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When reasoning about formal objects whose structures involve binding, it is often necessary to an-

alyze expressions relative to a context that associates types, values, and other related attributes with

variables that appear free in the expressions. We refer to such associations as binding contexts.

Reasoning tasks also require properties such as the shape and uniqueness of associations concerning

binding contexts to be made explicit. The Abella proof assistant, which supports a higher-order treat-

ment of syntactic constructs, provides a simple and elegant way to describe such contexts from which

their properties can be extracted. This mechanism is based at the outset on viewing binding contexts

as ordered sequences of associations. However, when dealing with object systems that embody

notions of linearity, it becomes necessary to treat binding contexts more generally as partitionable

multisets. We show how to adapt the original Abella encoding to encompass such a generalization.

The key idea in this adaptation is to base the definition of a binding context on a mapping to an

underlying ordered sequence of associations. We further show that properties that hold with the or-

dered sequence view can be lifted to the generalized definition of binding contexts and that this lifting

can, in fact, be automated. These ideas find use in the extension currently under development of the

two-level logic approach of Abella to a setting where linear logic is used as the specification logic.

1 Introduction

It is often necessary to develop specifications and to reason about formal objects whose structures incor-

porate some notion of binding. Examples of such objects include formulas, types, proofs, and programs.

A recursive analysis of such objects requires the examination of their subparts in which there may be

occurrences of free variables. This analysis is usually parameterized by an association of some kind,

such as a type, a value, or a property, with each of these variables. This paper concerns support for such

associations, which we refer to as binding contexts, in reasoning tasks.

The focus of our work is the treatment of binding contexts relative to a particular reasoning system,

the Abella proof assistant [1]. A defining characteristic of Abella is that it provides intrinsic support for

the higher-order approach to abstract syntax. At the representation level, this support derives from the

use of the terms of the simply typed lambda calculus as the means for encoding objects. At the level of

the logic, Abella incorporates the special generic quantifier ∇, pronounced as nabla, to move binding into

the meta-level and the associated nominal constants to encode free variables. Further, it allows properties

of binding contexts to be made explicit through the definition of context predicates and context relations

and thereby to be used in proofs.

While Abella provides rich support for working with binding contexts, one aspect that it does not

treat adequately with respect to these contexts is linearity. This requirement arises, for instance, when

bound variables take on the connotation of resources that must be used exactly once within the overall

syntactic object. To provide support for this viewpoint, it becomes necessary to encode binding contexts

as partitionable entities. We show in this paper how this capability can be built into the Abella system.

The key idea underlying our proposal is to view binding contexts as multisets that are permutation in-

variant and that can be constructed from two simpler multisets through multiset union. Thus, if ∼ is an
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infix operator representing the permutation relation between multisets and ++ is an infix multiset union

operator, the expression G ∼ (G1 ++ G2) encodes the fact that G1 and G2 partition the multiset G.1

Unfortunately, the ability to partition a multiset is not by itself sufficient for the usual reasoning tasks.

When G1 and G2 have been determined to be partitions of a binding context G, we need also to know

that each of them independently satisfies the properties needed to be the required kind of binding context.

A related issue is that we must be able to define what it means to be a binding context in a particular

reasoning task when these contexts may be constructed using multiset unions. A major part of our work

here is to outline a systematic method for realizing these requirements. Our proposal in a nutshell is to

identify what it means to be a binding context through the definition of a context predicate or relation

while initially viewing it as an ordered sequence or list of associations. This definition can then be lifted

to arbitrary multisets through the permutation relation. Distributivity of the property over multiset union

then factors through the same permutation relation. An auxiliary consequence of what we show is the

fact that this scheme is to a substantial extent automatable.

The rest of the paper is structured as follows. In the next section, we identify in more detail the

idea of binding contexts and describe their realization in Abella when they are represented in a list-based

form; we assume in this presentation, and, indeed, the rest of the paper, a familiarity with the Abella

system. Section 3 then identifies the need for linearity with respect to binding contexts in specifications

and the additional constructors and definitions that suffice to realize it. Of course, it still remains to be

shown how to make things work at the reasoning level. Section 4 explains how context predicates can

be defined when binding contexts may be constructed using the multiset union operator and how the

properties of such contexts can be extracted into lemmas even in this situation. Section 5 shows that

these ideas extend also to the setting of context relations, which embody the simultaneous description

of multiple correlated contexts. Section 6 discusses a schematic presentation of context predicates and

context relations and explains how the lifting procedure may be automated, describing some tactics for

implementing the corresponding algorithms. Section 7 discusses related work and Section 8 closes out

the paper by sketching the use of our work in the particular application domain that has motivated it.

2 Binding Contexts and their Conventional Treatment in Abella

Towards understanding the nature of binding contexts and the kinds of properties that must be associated

with them in reasoning tasks, we may consider the example of type assignment for the simply typed

lambda calculus. We limit the expressions in the calculus to those constructed from variables using the

operations of application, written as (e1 e2), and abstraction, written as λx : τ .e. The rules for associating

types with expressions in this calculus are then the following:

x : τ ∈ Γ

Γ ⊢ x : τ

Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ (e1 e2) : τ

Γ,x : τ ′ ⊢ e : τ

Γ ⊢ λx : τ ′
.e : τ ′ → τ

x new to Γ

Type assignment for closed terms is ultimately a relation between a term and a type. However, a

recursive definition of this relation requires us to consider type assignments to open terms under the as-

sumption that the free variables in the term have designated types. Thus, the relation must be formalized

as a ternary one, written as Γ ⊢ e : τ . In this example, Γ constitutes the typing or binding context. The

structure of Γ is governed by the rule for assigning types to abstractions. Based on this rule, we can

observe some properties that are implicitly associated with Γ: it assigns types only to variables and there

1Partitioning of multisets can be described without the use of a permutation relation; this is mainly a convenient way to do

it if we have the relation.
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is at most one assignment to any variable. While Γ is built one element at a time and seems to have the

structure of an ordered sequence, we are free to think of it a multiset or even a set. Note finally that a

closed-world assumption applies to the rules: a term may be assigned a type only by virtue of these rules.

Relational presentations of the kind above have a natural translation into Abella specifications. To

present this in the particular example under consideration, we must first describe a representation for

the types and terms of the simply typed lambda calculus. We will use the Abella types ty and tm for

encodings of expressions in these two categories. We will also use the constant arrow of type ty→ ty→
ty to represent the function type constructor, and the constants app and abs, respectively of type tm→
tm→ tm and ty→ (tm→ tm)→ tm, to represent application and abstraction in the object language. Note

the use of a higher-order abstract syntax representation here; for example, the term λx : τ1 → τ2.λy : τ1.x y

in the object language would be encoded by the Abella term (abs (arrow τ1 τ2) (x\abs τ1 (y\app x y))),
where τ1 and τ2 are the representations of the types τ1 and τ2, respectively.2 In this context, the content

of the type assignment rules is captured by the following Abella declarations that ultimately provide an

inductive definition for the ternary type assignment relation type_of:

Kind ty_assoc type .

Type ty_of tm -> ty -> ty_assoc .

Define member : A -> list A -> prop by

member X (X :: L) ;

member X (Y :: L) := member X L.

Define type_of : list ty_assoc -> tm -> ty -> prop by

type_of G X T := member (ty_of X T) G ;

type_of G (app M N) T := exists T', type_of G M (arrow T' T) /\ type_of G N T';

type_of G (abs T E) (arrow T T') := nabla x, type_of (ty_of x T :: G) (E x) T'.

Focusing on the first argument of the type_of relation, we see that it has the kinds of properties

that we observed of binding contexts that arise in type assignment and that it represents. While it has

the structure of an Abella list, it can equally be viewed as a multiset or a set; the use of the member

predicate relative to it is compatible with all these views. In the intended use of the predicate, this

collection is constructed one item at a time via the clause for assigning types to abstractions. The use

of the nabla quantifier also ensures that the associations it provides pertain only to nominal constants—

which represent the free variables in object language terms in the logic—and that there is at most one

such association in it for any such constant.

The properties we have described for binding contexts in type assignment can be important to rea-

soning tasks. They are key, for example, to showing the uniqueness of type assignment to any typeable

term: the proof of this fact hinges on the observations that the typing context does not assign types to

applications or abstractions and that the assignments to variables are unique. However, in a formalized

setting, it is not enough that these properties hold. It must also be made explicit that they do. This can be

done in Abella by what are commonly referred to as context definitions. In the example in question, the

following definition serves this purpose:

Define ty_ctx : list ty_assoc -> prop by

ty_ctx nil ;

nabla x, ty_ctx (ty_of x T :: G) := ty_ctx G.

The nabla quantifier in the head of the second clause is to be understood as follows: it must be instanti-

ated by a nominal constant in generating an instance of the clause and the substitutions for T and G that

2We recall that abstraction is written as the infix operator \ in Abella, i.e., the expression λx.F is denoted by x\F .
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generate the instance must not contain that constant. The formula (ty_ctx G) now serves to assert that

G is a typing context with the necessary properties.

It is useful to drill down a little on the last statement. One of the requirements of a typing context is

that it associates types only with nominal constants, i.e., the representatives of variables in terms. The

following definition identifies the predicate name as a recognizer for such constants:

Define name : A -> prop by

nabla n, name n.

Using it, we can capture the desired property in the following Abella theorem about the “shape” of the

entities comprising a typing context:

Theorem ty_ctx_mem : forall L X,

ty_ctx L -> member X L -> exists n T, name n /\ X = ty_of n T.

Another property that is important is the uniqueness of type association. This can be rendered into the

following Abella theorem:

Theorem ty_ctx_uniq : forall L X T1 T2 ,

ty_ctx L -> member (ty_of X T1) L -> member (ty_of X T2) L -> T1 = T2

These theorems can both be proved by induction on the definition of ty_ctx. Once we have these

properties, it is an easy matter to prove the following theorem:

Theorem ty_uniq : forall L X T1 T2 ,

ty_ctx L -> type_of L X T1 -> type_of L X T2 -> T1 = T2.

The uniqueness of type assignment for closed terms follows easily from this theorem.

Although our discussion in this section has been oriented around an example, the underlying concepts

are quite general. Binding contexts manifest themselves commonly in specifications about syntactic con-

structs that incorporate binding notions. Context definitions make explicit the structure of such contexts

when a higher-order abstract syntax representation is used for the constructs. The properties that we must

extract from such definitions to support other reasoning tasks take two forms. First, there are member-

ship lemmas like ty_ctx_mem that constrain the shape of the elements of the context. Second, there are

uniqueness lemmas like ty_ctx_uniq that assert the uniqueness of bindings. We have seen how context

definitions can be played out and the associated lemmas can be proved when contexts are limited to being

constructed and analyzed one item at a time. We will next show why this view of the structure of contexts

needs to be generalized and then demonstrate how such a generalization may be accommodated.

3 Partitionable Binding Contexts and Multiset Union

The treatment of binding contexts that we have described in the previous section does not support the

aspect of linearity that is relevant to some applications. An example of such an application is provided

by the simply typed linear lambda calculus. To be well-formed, terms in this calculus must have the

additional property that every bound variable is used exactly once. Under this restriction, the term

λx : τ1 → τ2.λy : τ1.x y is well-formed but λx : τ1 → τ1 → τ2.λy : τ1.x y y and λx : τ1.λy : τ2.y are not.

If we are to build a linearity check into the type assignment process, the rule for assigning a type to

an application must incorporate the idea of partitioning a binding context. To support this possibility, we

propose allowing binding contexts to be constructed using one other operation, that of multiset union.

More specifically, we shall continue to use the type (list A) to represent such contexts but now we will

interpret this type as that of multisets of elements of type A rather than that of ordered sequences. We will
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continue to use the constant nil and the infix operator :: as constructors of this type, but now interpret

the latter as a means for adding an element to a multiset. Additionally, the type now has one other

constructor, the infix operator ++ of type (list A) -> (list A) -> (list A). An expression of

the form G1 ++ G2 is intended to represent a multiset whose elements comprise those of G1 and G2.

The member predicate must be adapted to this changed syntax. Its definition becomes the following:

Define member : A -> list A -> prop by

member X (X :: G) ;

member X (Y :: G) := member X G ;

member X (G1 ++ G2) := member X G1 \/ member X G2.

To accommodate linearity, we will need a counterpart to this predicate that represents the selection of a

member from a multiset that simultaneously yields a smaller multiset. Towards this end, we will use a

predicate called select that has the definition below.

Define select : A -> list A -> list A -> prop by

select X (X :: G) G ;

select X (Y :: G) (Y :: G') := select X G G' ;

select X (G1 ++ G2) (G1 ' ++ G2) := select X G1 G1 ' ;

select X (G1 ++ G2) (G1 ++ G2 ') := select X G2 G2 '.

We want to be able to treat binding contexts that have the same elements as equivalent, regardless of

how they are constructed. Towards this end, we introduce a permutation predicate perm for multisets. It

is useful to define this, at a high-level, by recursion on the number of elements in each context, defining

an auxiliary no_elems predicate that holds of a context that is empty. The relevant definitions follow:

Define no_elems : list A -> prop by

no_elems nil ;

no_elems (G1 ++ G2) := no_elems G1 /\ no_elems G2.

Define perm : list A -> list A -> prop by

perm G1 G2 := no_elems G1 /\ no_elems G2 ;

perm G1 G2 := exists X G1 ' G2 ',

select X G1 G1 ' /\ select X G2 G2 ' /\ perm G1 ' G2 '.

The auxiliary definition of no_elems also gives us a means of ensuring that all bound variables are used

in a specification of a linear system. We can assert that the context satisfies this predicate after we have

analyzed the entirety of a term to ensure no variables were introduced by an abstraction but left unused.

We introduce a convenient notational shorthand for the predicate perm: we shall write G1∼ G2 to

represent (perm G1 G2). The perm predicate and the ++ operator together give us a means for encoding

a partition of n multisets into m multisets, which we can write as G1 ++ ... ++ Gn∼ D1 ++ ... ++ Dm.

Note that the permutation component of this expression allows elements to be distributed in any order

between the multisets on the other side—so that partitioning does not depend on the elements to partition

having been ordered correctly ahead of time.

The components that we have described in this section provide us the necessary means for writing

linear specifications. Let us bring this out through the definition of a typing relation for the linear lambda

calculus that only assigns types to valid linear lambda terms. The definition of this relation, which we

denote by the predicate ltype_of, is as follows:

Define ltype_of : list ty_assoc -> tm -> ty -> prop by

ltype_of G X T := exists G', select (ty_of X T) G G' /\ no_elems G' ;

ltype_of G (app M N) T := exists T' G1 G2 ,

G ∼ G1 ++ G2 /\ ltype_of G1 M (arrow T' T) /\ ltype_of G2 N T' ;

ltype_of G (abs T E) (arrow T T') :=

nabla x, ltype_of (ty_of x T :: G) (E x) T'.
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It is worth mentioning the differences between the definition of this predicate and that of type_of

in Section 2 to understand how the linearity constraints are enforced. The use of select in the first

clause ensures that a particular association for a bound variable cannot be used more than once, and

the no_elems assertion ensures that every association must have been used. The formula G∼ G1 ++ G2

realizes a partitioning of the context G and thereby ensures that the type assignment to a particular bound

variable must be used for typing exactly one of the two subcomponents of an application. The structure

of the last clause, which is unchanged from the definition of type_of, still ensures that the binding

context has associations only for variables and that an association for any variable is unique. However,

we must reason now about the effect of partitioning to see that these properties actually hold.

4 Reasoning About Binding Contexts in the Generalized Form

In proving properties of relations whose definitions involve binding contexts in the extended form, we

will once again need to establish membership and uniqueness lemmas pertaining to the binding contexts.

For example, in showing the uniqueness of type assignment as expressed by the ltype_of relation, we

will need the counterparts of the ty_ctx_mem and ty_ctx_uniq lemmas for contexts in the new form.

We show here how this can be done. The difficulty that must be addressed is that the introduction of

multiset union breaks the view of contexts being constructed one element at a time. The solution that

we propose is based on flattening a context with arbitrary structure into one that is constructed in the

conventional way. We present the idea relative to an example but its generality should be clear from the

discussion.

4.1 Lifting Context Definitions to the Generalized Form

In Section 2, we defined the predicate ty_ctx to make explicit the logical structure of typing contexts

for the simply typed lambda calculus. This definition must now be extended to cover contexts that are

constructed using the multiset union operator. We might think of doing this by adding a third clause akin

to the following to the definition of ty_ctx:

ty_ctx (G1 ++ G2) := ty_ctx G1 /\ ty_ctx G2.

Unfortunately, this idea does not work: such a clause would break the property of the binding context

that associations for a particular name are unique, as nothing in it enforces that the names associated

within G1 and G2 are distinct from each other, even if they are distinct within each individual context.

The insight that underlies the solution that we propose is that the properties in question should not

depend on the order in which the associations in a binding context are listed or the way in which they

are distributed over a multiset, only on what those associations are. Thus, it would suffice if we could

restructure the multiset construction and rearrange its elements so as to produce a form that satisfies the

ty_ctx predicate that we had defined earlier. Further, the kind of projection that is necessary here can

be accomplished through the perm predicate that relates two multisets with possibly different structures

so long as they have the same elements. Thus, in the present example, the context definition might be

given by the ty_ctx' predicate that is defined as follows:

Define ty_ctx ' : list ty_assoc -> prop by

ty_ctx ' G := exists L, G ∼ L /\ ty_ctx L.

This predicate applies to typing contexts presented in the generalized form since the perm predicate

is defined over multisets that could include the ++ operator as well. Note, however, the definition of
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ty_ctx is dependent on an “ordered sequence” view, i.e., the given context must be projected onto one

in this form to assess whether it possesses the necessary properties.

4.2 Proving Membership and Uniqueness Lemmas

The new definition must still enable us to prove lemmas about the shape of the associations in the binding

context as well as their uniqueness. These lemmas are the following in the present situation:

Theorem ty_ctx_mem ' : forall G X,

ty_ctx ' G -> member X G -> exists n T, name n /\ X = ty_of n T.

Theorem ty_ctx_uniq ' : forall G X T1 T2 ,

ty_ctx ' G -> member (ty_of X T1) G -> member (ty_of X T2) G -> T1 = T2.

The proofs of these lemmas also embody a process of “lifting” of properties established based on

the ordered sequence view through the projection. First observe that the theorems ty_ctx_mem and

ty_ctx_uniq continue to hold despite the change in the definition of the member predicate. Specifically,

the definition of this predicate reduces to the original one when the multiset argument is limited to having

a list-like structure, a structure that is forced by the ty_ctx predicate. But now we can also prove the

following (generic) lemma that states that membership in a multiset is preserved through a permutation:

Theorem mem_replace : forall X G G', member X G -> G ∼ G' -> member X G'.

Since contexts described by ty_ctx' are only a permutation away from those described by ty_ctx, this

is sufficient to lift the theorems ty_ctx_mem and ty_ctx_uniq into ty_ctx_mem' and ty_ctx_uniq'.

We need only apply the lemma to replace the member predicates in one theorem with those in the other.

4.3 Distributivity of Context Properties over Multiset Unions

The multiset union constructor was introduced originally to facilitate a partitioning of contexts. For this

to be useful for the intended purpose, the facet of being a context of the desired kind must distribute over

such partitioning. In our example, this translates into the desire that the following theorem be provable:

Theorem ty_ctx_distr : forall G G1 G2 ,

ty_ctx ' G -> G ∼ G1 ++ G2 -> ty_ctx ' G1 /\ ty_ctx ' G2.

Once again, we can prove the desired property by establishing a corresponding property for list-

like contexts, and then lifting that property to contexts that may include the multiset union operator in

their formation. One approach to stating the first property involves defining a predicate that encodes an

ordered partition relation between three lists:

Define partition : list A -> list A -> list A -> prop by

partition nil nil nil ;

partition (X :: L) (X :: L1) L2 := partition L L1 L2 ;

partition (X :: L) L1 (X :: L2) := partition L L1 L2.

By exploiting the fact that the relative order of elements in a list L is preserved within the related lists L1

and L2, we can easily prove the following theorem that states that the property of being a typing context

is preserved by such partitions:

Theorem ty_ctx_distr_part : forall L L1 L2 ,

ty_ctx L -> partition L L1 L2 -> ty_ctx L1 /\ ty_ctx L2.

We can lift this theorem to ty_ctx' and perm-style partitions by relating partition and perm.

Towards this end, we first define a predicate that captures the property that a context has a list-like

structure:
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Define is_list : list A -> prop by

is_list nil ;

is_list (X :: L) := is_list L.

The following lemma then provides the necessary bridge:

Theorem perm_to_part : forall L G1 G2 ,

is_list L -> L ∼ G1 ++ G2 -> exists L1 L2 ,

G1 ∼ L1 /\ G2 ∼ L2 /\ partition L L1 L2.

Essentially, the lemma says that a partition of the elements in a list into two arbitrary contexts can

be flattened into a partition between lists of the same elements. It can be proved by inverting the

permutation and using the elements extracted from the multisets G1 and G2 to construct the lists L1 and

L2. The proof relies critically on the following lemma which allows elements in a multiset G that is

related by perm to L to be extracted one at a time in the order they appear in L:

Theorem sel_replace : forall X G1 G1 ' G2 ,

G1 ∼ G2 -> select X G1 G1 ' -> exists G2 ', G1 ' ∼ G2 ' /\ select X G2 G2 '.

Note that this lemma is, in fact, a counterpart to mem_replace for select.

At this stage, we have all the ingredients in place to prove the ty_ctx_distr theorem. Given any

context G for which ty_ctx' holds, there must, by definition, be an L such that G∼ L and ty_ctx L.

Since G∼ G1 ++ G2 holds, by properties of perm, it must then be the case that L∼ G1 ++ G2 holds.

Now, using theorems perm_to_part and ty_ctx_distr_part, we can conclude that there are con-

texts L1 and L2 such that G1∼ L1, G2∼ L2, ty_ctx L1, and ty_ctx L2 hold; we will need to show

that is_list L holds in order to invoke theorem perm_to_part, but this follows easily from the fact

that ty_ctx L holds. Using the definition of ty_ctx', it is then immediate that ty_ctx' G1 and

ty_ctx' G2 must hold.

5 Generalization to Context Relations

Typical meta-theoretic reasoning tasks require us to relate different kinds of analyses over the same

object-language expression. When the expression embodies binding constructs, these analyses would be

parameterized by binding contexts. In the Abella setting, the shape of each of these contexts must be

characterized by a definition. When different analyses are involved in the property to be proved, there

will generally be an additional requirement: the content of the different binding contexts parameteriz-

ing the analyses must be coordinated in an appropriate way. Context relations constitute the canonical

mechanism in Abella for phrasing context definitions to suit the reasoning needs in such situations. The

generalized multiset structure is needed for dealing with linearity in this situation as well and the meth-

ods for supporting it bear a remarkable resemblance to those when only one binding context is involved.

We bring this observation out in this section through an example.

The example we consider is that of relating typing judgments across a translation. The target lan-

guage for the translation shall be the linear variant of the simply typed lambda calculus that we introduced

in Section 3. The source language, which we will call mini linear ML, shall be similar, except that it

shall include an additional let construct. To represent such expressions, we introduce the constant let

that has the type ty→ tm→ (tm→ tm)→ tm. Observe that higher-order abstract syntax is used again in

the encoding of let expressions: the expression let X:τ = V in F is represented by (let τ V (X\F)),
where τ , V, and F are the representations of τ , V, and F, respectively. The typing relation for the source

language is now given by the following definition:
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Define mltype_of : list ty_assoc -> tm -> ty -> prop by

mltype_of G X T := exists G', select (ty_of X T) G G' /\ no_elems G' ;

mltype_of G (app M N) T := exists T' G1 G2 ,

G ∼ G1 ++ G2 /\ mltype_of G1 M (arrow T' T) /\ mltype_of G2 N T' ;

mltype_of G (let T' V E) T := exists G1 G2 ,

G ∼ G1 ++ G2 /\ mltype_of G1 V T' /\

nabla x, mltype_of (ty_of x T' :: G2) (E x) T ;

mltype_of G (abs T E) (arrow T T') :=

nabla x, mltype_of (ty_of x T :: G) (E x) T'.

The translation of mini linear ML expressions to the linear lambda calculus essentially replaces let

expressions by applications. It is formalized by the following clauses for the ltrans predicate:

Kind var_assoc type .

Type trans_to tm -> tm -> var_assoc .

Define ltrans : list var_assoc -> tm -> tm -> prop by

ltrans G X Y := exists G', select (trans_to X Y) G G' /\ no_elems G' ;

ltrans G (app M N) (app M' N') := exists G1 G2 ,

G ∼ G1 ++ G2 /\ ltrans G1 M M' /\ ltrans G2 N N' ;

ltrans G (let T V E) (app (abs T E') V') := exists G1 G2 ,

G ∼ G1 ++ G2 /\ ltrans G1 V V' /\

nabla x y, ltrans (trans_to x y :: G2) (E x) (E' y) ;

ltrans G (abs T E) (abs T E') :=

nabla x y, ltrans (trans_to x y :: G) (E x) (E' y).

We would like to prove that this translation preserves the types of expressions. Since translation and

typing are defined by recursion over the structures of expressions and will, in general, encounter open

terms, the theorem to be proved must have a form such as the following:

Theorem ltrans_pres_ty '' : forall E E' T T' G G' G'',

mltype_of G E T -> ltrans G' E E' -> ltype_of G'' E' T' -> T = T'.

However, this formula cannot be proved as stated. The contexts that arise at intermediate points in trans-

lation and type assignment have structures and relationships that must be made explicit in the formulation

to yield a provable statement. Only names can be associated with other data in these contexts, and these

associations must be unique. Further, we will need to relate the types of free variables in a term and its

translation to be able to show that the two have the same type.

The canonical way to make the relationship in the content of multiple contexts explicit in Abella is

by defining an appropriate context relation as a predicate. Let trans_rel be a predicate that encodes

the relevant relationship between the three contexts in consideration here. The theorem to be actually

proved then becomes the following:

Theorem ltrans_pres_ty : forall E E' T T' G G' G'',

trans_rel G G' G'' -> mltype_of G E T -> ltrans G' E E'

-> ltype_of G'' E' T' -> T = T'.

In proving theorems such as these, there are, once again, certain lemmas about members of the contexts

that we must be able to extract from the relevant context relations. In this particular example, we would

need to be able to prove the following lemmas that express a uniqueness property and a membership

coordination property between the related contexts:

Theorem trans_rel_uniq : forall G1 G2 G3 X Y Y',

trans_rel G1 G2 G3 -> member (trans_to X Y) G2

-> member (trans_to X Y') G2 -> Y = Y'.



28 Binding Contexts as Partitionable Multisets in Abella

Theorem trans_rel_mem : forall G1 G2 G3 E,

trans_rel G1 G2 G3 -> member E G2 -> exists X Y T,

E = trans_to X Y /\ name X /\ name Y /\

member (ty_of X T) G1 /\ member (ty_of Y T) G3.

These properties are stated from the perspective of the second of the three contexts. There would be four

more similar properties when matters are viewed from either of the other two contexts.

The issue to be addressed, then, is how the context relation should be defined to allow for the extrac-

tion of such properties. There is a standard recipe for realizing the described objectives when contexts

are limited to a list-like structure. In this example, we may define a list-oriented version of trans_rel

following the conventional strategy as follows:

Define trans_rel_list : list ty_assoc -> list var_assoc

-> list ty_assoc -> prop by

trans_rel_list nil nil nil ;

nabla x y, trans_rel_list (ty_of x T :: L1)

(trans_to x y :: L2)

(ty_of y T :: L3) := trans_rel_list L1 L2 L3.

The uniqueness of binding property relativized to trans_rel_list has a proof similar to the one dis-

cussed for the typing context in Section 2. The second property follows easily from the fact that the

definition is based on a coordinated recursion over the three contexts that in fact ensures that they each

contain the right kinds of members.

What we want, though, is a definition of trans_rel that applies to contexts whose structure includes

the multiset union constructor. Using the ideas discussed in Section 4, we can accomplish this once again

by lifting the list-based definition up to contexts with a more general structure through permutations. The

following definition of the relation realizes the desired result:

Define trans_rel : list ty_assoc -> list var_assoc -> list ty_assoc -> prop by

trans_rel G1 G2 G3 := exists L1 L2 L3 ,

G1 ∼ L1 /\ G2 ∼ L2 /\ G3 ∼ L3 /\ trans_rel_list L1 L2 L3.

This definition still requires the associations in each context to correspond with associations in the other

contexts, but now the corresponding associations need not be in the same position in each context. Still,

since the associations are clearly linked in the list-based context relation, we will be able to lift the

necessary membership and uniqueness lemmas from the latter context relation. Indeed, the proof of

trans_rel_mem proceeds nearly as in the unary case: we can make use of mem_replace to ensure that

E is an element of the underlying translation context, and then make use of this lemma again to ensure that

ty_of X T and ty_of Y T are also members of the original typing contexts. The uniqueness lemma

can be proved from the corresponding lemma for the underlying context in a similar way, and the lifting

process is even simpler: since no conclusions need be drawn about the other contexts, mem_replace is

only needed in one direction.

The first clause in the definitions of mltype_of, ltrans, and ltype_of actually selects an associ-

ation from the relevant context rather than simply checking membership. Consequently, we would often

need a stronger version of the trans_rel_mem property that is based on the select relation and that

additionally asserts that the remaining contexts continue to be in the trans_rel relation:

Theorem trans_rel_sel : forall G1 G2 G2 ' G3 E,

trans_rel G1 G2 G3 -> select E G2 G2 ' -> exists X Y T G1 ' G3 ',

E = trans_to X Y /\ name X /\ name Y /\ select (ty_of X T) G1 G1 ' /\

select (ty_of Y T) G3 G3 ' /\ trans_rel G1 ' G2 ' G3 '.
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The new requirement here is that we must show that trans_rel G1' G2' G3' holds for the three

new contexts G1', G2', and G3' that result from selection from G1, G2, and G3. Most of this lemma

can be proved without significant digression from the proof sketched for trans_rel_mem. For the lift-

ing step, where we convert the selects on multisets to selects on lists and vice versa, we can just

use sel_replace instead of mem_replace. This also yields the necessary permutations for conclud-

ing trans_rel G1' G2' G3': if trans_rel G1 G2 G3 holds because trans_rel_list L1 L2 L3

does, and selecting from L1, L2, and L3 yields L1', L2', and L3', then G2'∼ L2', G1'∼ L1', and

G3'∼ L3' must hold. In the overall scheme, we can think of just proving trans_rel_sel. We can get

a proof of trans_rel_mem from this if it is desired by using the following easily proved theorem that

asserts that selecting from a context implies membership in that context:

Theorem sel_implies_mem : forall X G G', select X G G' -> member X G.

Finally, when multiset union is permitted in the construction of contexts, we will need lemmas that

verify the distributivity of context relations over partitions. For example, the definitions of mltype_of,

ltrans, and ltype_of will force us to prove lemmas such as the following that are analogous to the

distributivity property for ty_ctx_distr in the preceding section:3

Theorem trans_rel_distr : forall G1 G1 ' G1 '' G2 G3 ,

trans_rel G1 G2 G3 -> G1 ∼ G1 ' ++ G1 '' -> exists G2 ' G2 '' G3 ' G3 '',

G2 ∼ G2 ' ++ G2 '' /\ G3 ∼ G3 ' ++ G3 '' /\

trans_rel G1 ' G2 ' G3 ' /\ trans_rel G1 '' G2 '' G3 ''.

To prove such a distributivity lemma, we can first state and prove an analogous lemma for the related

contexts in list form and then lift it to contexts with a more general structure. For this, we may reuse

the definition of partition and many of its properties, stating the lemma to prove in the case under

consideration as

Theorem trans_rel_list_distr : forall L1 L1 ' L1 '' L2 L3 ,

trans_rel_list L1 L2 L3 -> partition L1 L1 ' L1 '' -> exists L2 ' L2 '' L3 ' L3 '',

trans_rel_list L1 ' L2 ' L3 ' /\ trans_rel_list L1 '' L2 '' L3 '' /\

partition L2 L2 ' L2 '' /\ partition L3 L3 ' L3 ''.

The ordered nature of partition again is critical to the proof; since the related contexts are also ordered,

we can construct new partitions using the corresponding elements as in partition L1 L1' L1''

in the same places for the other contexts. Then, to lift this lemma to arbitrary multiset partitions, we can

exploit perm_to_part in a first step to transform G1∼ G1' ++ G1'' into partition L1 L1' L1'',

where G1∼ L1, G1'∼ L1', and G1''∼ L1'' hold. After applying trans_rel_list_distr, we can

make use of a kind of inverse of the perm_to_part lemma to convert partitions back into permuta-

tions:

Theorem part_to_perm : forall L L1 L2 , partition L L1 L2 -> L ∼ L1 ++ L2.

Since partitioning a list involves a restricted form of selection, the structure of the proof of this lemma

should be easy to visualize. To complete the proof of trans_rel_distr, we can then note that the

contexts it asserts the existence of can be the same as those asserted by trans_rel_list_distr, and

that for any G, L, L', and L'', G∼ L' ++ L'' follows from G∼ L and L∼ L' ++ L'' by properties of

perm. Thus, we can conclude that trans_rel G1' G2' G3' and trans_rel G1'' G2'' G3'' hold

by definition; we will need to show that each list is a permutation of itself for this, but this follows easily

from the fact that each is a list.

3Note that these lemmas do not let us specify the partition used for multiple contexts at once; they assert only the existence

of some partitions that work. However, they suffice for many reasoning examples or can be worked around by exploiting

properties of other predicates—such as the typing and translation relations here.
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6 Schematic Context Specifications and Automated Proofs

The idea of defining a multiset-based context specification—via a context predicate or context relation—

by lifting from a list-based one has a general applicability and can be deployed in other developments as

well. We present in this section a general form for such specifications for which we can write schematic

proofs of several distributivity lemmas and of a lifting procedure for a reasonably large class of lemmas

based on the member predicate which includes our membership and uniqueness lemmas. This works

since the distributivity lemmas and lifting procedure depend only on the general structure of the context

specifications defined and not on the particular elements of the context(s). Hence, a user need only state

and prove the member lemmas that require explicit reference to the elements of the binding context(s)

for an underlying specification and can leave the rest of the work to an automated procedure.

Let us begin by introducing a command that might be used to succinctly generate a pair of context

specifications—one based on lists and the other based on multisets. The syntax of this command should

take the following general form, with each FORMULA referring to an expression of type prop, each TERM

referring to a term of some other type, each VAR referring to a variable identifier, and CTX-NAME referring

to the name of the context specification to be defined:

Context CTX-NAME with elems as

nabla VAR11 ... VAR1k_1 (TERM11 _|_ ... _|_ TERM1n -| FORMULA1 ) \/ ... \/

nabla VARm1 ... VARmk_m (TERMm1 _|_ ... _|_ TERMmn -| FORMULAm ).

The use of the formula is to provide an additional means for encoding the relationship between elements

of each of the related contexts in a context relation. Also note that there may be zero variables, in which

case the nabla may be omitted, and we can omit the formula if it is true. However, there must be at

least one clause and at least one term denoting some element of a context. As examples of the intended

usage of this command, we present the commands that, following the process we describe next, would

generate the definitions of ty_ctx' and trans_rel from Sections 4 and 5:

Context ty_ctx ' with elems as nabla x (ty_of x T).

Context trans_rel with elems as

nabla x y (ty_of x T _|_ trans_to x y _|_ ty_of y T').

Our command schema is meant to define a pair of context specifications of the following forms,

where each TYPE is an Abella type inferred from the types of each contexts’ elements:

Define CTX-NAME_list : list TYPE1 -> ... -> list TYPEn -> prop by

CTX-NAME_list nil ... nil ;

nabla VAR11 ... VAR1k_1 , CTX-NAME_list (TERM11 :: L1) ... (TERM1n :: Ln) :=

CTX-NAME_list L1 ... Ln /\ FORMULA1 ;

...

nabla VARm1 ... VARmk_m , CTX-NAME_list (TERMm1 :: L1) ... (TERMmn :: Ln) :=

CTX-NAME_list L1 ... Ln /\ FORMULAm .

Define CTX-NAME : list TYPE1 -> ... -> list TYPEn -> prop by

CTX-NAME G1 ... Gn := exists L1 ... Ln ,

G1 ∼ L1 /\ ... /\ Gn ∼ Ln /\ CTX-NAME_list L1 ... Ln.

Once we have a context specification of the aforementioned form, a suite of lemmas can be automati-

cally generated about it. First, a distributivity lemma can be generated for each index of the specification

that allows the context specification to be distributed over partitions of the corresponding context while

generating corresponding partitions of the other context(s) as needed for the other indices. The general

form of the ith such lemma may be represented as follows:
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Theorem CTX-NAME_distri : forall G1 ... Gi Gi ' Gi '' ... Gn ,

CTX-NAME G1 ... Gn -> Gi ∼ Gi ' ++ Gi '' -> exists G1 ' G1 '' ... Gn ' Gn '',

CTX-NAME G1 ' ... Gn ' /\ CTX-NAME G1 '' ... Gn '' /\

G1 ∼ G1 ' ++ G1 '' /\ ... /\ Gn ∼ Gn ' ++ Gn ''.

For instance, for trans_rel, we might automatically generate the lemma for i = 2 in this form as:

Theorem trans_rel_distr2 : forall G1 G2 G2 ' G2 '' G3 ,

trans_rel G1 G2 G3 -> G2 ∼ G2 ' ++ G2 '' -> exists G1 ' G1 '' G3 ' G3 '',

trans_rel G1 ' G2 ' G3 ' /\ trans_rel G1 '' G2 '' G3 '' /\

G1 ∼ G1 ' ++ G1 '' /\ G3 ∼ G3 ' ++ G3 ''.

Each lemma can be proved automatically as well. The generated proofs follow the structure that we

have already seen in Sections 4 and 5. In short, a corresponding lemma involving partition is first

automatically generated and proved by a routine inductive argument that depends only on the number of

clauses and names in the definition. Then, perm_to_part is applied to interface the desired lemma’s

hypotheses with this lemma’s, and finally part_to_perm is applied to obtain results in the right form.

For lemmas involving member, an algorithm exists to automatically lift lemmas proved for traditional

context specifications to their multiset versions. Suppose the user proves a lemma of the following form:

Theorem USER-LEMMA : forall L1 ... Ln VAR*,

CTX-NAME_list L1 ... Ln -> [member TERM Li ->]* [exists VAR*, ]

[member TERM Lj /\]* [FORMULA /\]* [TERM = TERM /\]* true .

Suppose also that each FORMULA and TERM does not depend on any of the context variables Li, so that

any non-member assertions are only about the elements of the context(s). Then, a corresponding lemma

for multiset-based contexts, of the following form, can be automatically generated and proved:

Theorem USER-LEMMA-MSET : forall G1 ... Gn VAR*,

CTX-NAME G1 ... Gn -> [member TERM Gi ->]* [exists VAR*, ]

[member TERM Gj /\]* [FORMULA /\]* [TERM = TERM /\]* true .

The automatically generated proof involves three main steps:

1. The context specification hypothesis CTX-NAME G1 ... Gn is unfolded and appropriate instances

of mem_replace are applied to each of the other hypotheses.

2. The user-provided lemma is applied to the hypotheses constructed in the first step.

3. The conclusions obtained using the user-provided lemma are converted into the desired forms.

Nothing needs to be done for the FORMULA and equality conclusions, but any obtained instances of

member are converted to the correct form via appropriate uses of mem_replace. Since the original

lemma’s form was restricted to only allow member to pull from contexts described by the context

specification, it is certain that the requisite permutations will be available; they are necessarily the

same permutations as obtained by unfolding CTX-NAME G1 ... Gn.

We envision tactics in Abella for handling the aforementioned automation. A subst tactic would

implement the mem_replace lemma, a distr tactic would implement the distributivity lemmas, and

a lift tactic would implement the procedure for lifting member-based lemmas. For example, calling

subst Hi into Hj would apply the mem_replace lemma, as long as Hi is an appropriate permutation

and Hj is an instance of the member predicate. On the other hand, calling distr Hi over Hj with

Hi being a context specification defined via the Context command and Hj being a perm-style partition

would prove and apply a distributivity lemma for whichever index of the context specification could be

matched with the input permutation. And, finally, calling lift USER-LEMMA would generate and prove

the corresponding USER-LEMMA-MSET, adding it as a new hypothesis.
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7 Related Work

Our focus in this paper has been on the special problems that arise when binding contexts must be ac-

corded a resource interpretation. While this concern is original to our work, we have superimposed it

on a treatment of resources, which is an issue that has received the attention of other researchers. A

particular situation in which the need for such a treatment has arisen is in the encoding of linear logic [7]

within proof assistants towards mechanizing reasoning about the meta-theoretic properties of this logic.

Chaudhuri et al. have undertaken this task using the Abella system [4]. They too have used multisets to

encode resources, which, in their case, are linear collections of formulas. They observe that the repre-

sentation of multisets must support the ability to add an element to a multiset and to partition a multiset,

and it must ensure that multisets are considered to be equivalent under permutations. These observations

underlie our work as well, with the key difference that we have taken permutation equivalence to be fun-

damental to the representation. This allows us to introduce the ++ constructor that renders partitioning

into a syntactic operation rather than needing it to be defined, as is done by the merge predicate in [4].

Our approach has the benefit of succinctness, at least in presentation; for example, it accommodates a

simple rendition of the partitioning of a multiset into several subcomponents. On the negative side, the

definitions of permutation and the addition (or, dually, the selection) of an element are marginally more

complex. Similar concerns arise in the encoding of linear logic in the Coq system developed by Olivier

Laurent [8]. In that work, the choice was made to use lists to represent linear collections of formulas and

to realize the multiset interpretation via an explicit “exchange” rule that is implemented via permutations.

While this approach supports a simple encoding, it separates partitioning from permutations, an aspect

that can make the analysis of the derivability of particular sequents in linear logic more complex.

The notion of partitionable contexts is also relevant to the LINCX framework [6] that allows the user

to define functions whose types correspond to typing judgments in the linear logical framework LLF [3];

theorems given by the type of the function are considered proved if the function can be shown to be

total. Unlike our scheme that uses the explicit definition of a permutation relation for treating partitions,

LINCX provides a built-in operator ⊲⊳ for context joins, whose definition is hidden from the user. One

significant difference between these schemes is that, since LLF contexts are inherently ordered, context

joins must preserve the relative order of elements whereas perm-style partitions need not. Each element

of G = G1 ⊲⊳ G2 remains in the same order in G1 and G2 but is only made available in exactly one of

them—with only a placeholder in the other for order-preservation and type checking purposes. Since

context joins are built-in and system-manipulated, a user need not explicitly drive the functionality of

these. However, by the same token, they also cannot affect the functionality. In contrast, we expose the

definition of perm and allow users to reason about it and prove additional lemmas if needed—though the

user also typically must reason explicitly about perm in order to make use of it.

The encoding that we have used for type assignment in the simply typed linear lambda calculus is

based on superimposing linearity explicitly on typing contexts. This choice has been motivated by the

eventual application for our work that we discuss in the next section; the simply typed linear lambda

calculus figures mainly as an example to highlight the issues that have to be considered in this setting.

If the focus is instead on a specific example, then an encoding of a different style could be used to

circumvent the issues discussed. For instance, the simply typed linear lambda calculus could have been

treated by specifying type assignment and linearity separately; uniqueness of typing in this case would,

for example, be a simple consequence of the result for the regular simply typed lambda calculus. This

style in fact underlies the encoding of linear logic and other substructural logics described in [5].

The idea of schematically extracting context properties, useful for minimizing the burden of reason-

ing explicitly about contexts, has also been explored in other settings besides ours. Savary Bélanger



T. Gray & G. Nadathur 33

and Chaudhuri [2] define a plugin for Abella for concisely defining and extracting properties from what

they call regular context relations, which describe the structure of LF contexts. This structure is notice-

ably similar to the structure of context specifications without the addition of the lifting procedure using

perm. Specifically, in their framework, a user can define a context schema that fully specifies the form

of the elements in the desired context(s). Then, they can make use of provided tacticals for extracting

properties of the corresponding context relation. For example, the inversion tactical extracts the form of

(corresponding) elements in the context(s), much like our membership lemmas. Though both our and

their developments define a general form for contexts of interest that capture some desired properties and

then provide tools for extracting those properties, the specific goals and the actual form of the contexts

differ significantly.

8 Conclusion

In this paper, we have discussed our scheme for specifying binding contexts that must be partitionable

in Abella. We have illustrated our ideas by using typing judgments and a translation relation that are en-

coded directly as definitions in the reasoning logic of Abella. However, reasoning in Abella is often done

using a two-level logic approach, in which the reasoning logic is augmented with an auxiliary specifica-

tion logic that is well-suited for computation. This paradigm is realized by embedding the specification

logic in the reasoning logic via a definition that encapsulates the proof system of the specification logic;

one then describes object systems in the specification logic and reasons about them via the ability the

embedding provides to reason about derivability in the specification logic. In ongoing work, we are

exploring the possibility of using a variant of linear logic called Forum [9] that has a computational in-

terpretation as the specification logic in this framework. The motivation for doing so is that linear object

systems, such as the linear lambda calculus that we have considered here, can be specified in a logical

way by making use of linear implication (⊸) to encode resources and their usage, a move that enables

metatheoretic properties of the specification logic to be used in simplifying the reasoning process. To

support this idea, we must provide an embedding of Forum in Abella. Since formulas in one category in

such a logic must be used exactly once, their encoding and usage in the embedding necessitates a treat-

ment of linear contexts with an associated capability for considering their partitioning in the reasoning

process.4 Moreover, when the object system embodies notions of binding, such linear contexts take on

the attributes of binding contexts that have been the topic of interest in this paper. Many of the ideas

we have discussed remain applicable in this situation and we are in fact incorporating the automation

techniques described in Section 6 in our implementation towards providing the user a tool to simplify

reasoning developments that make use of the new specification logic.
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