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The “Harmony Lemma”, as formulated by Sangiorgi & Walker, establishes the equivalence between

the labelled transition semantics and the reduction semantics in the π-calculus. Despite being a

widely known and accepted result for the standard π-calculus, this assertion has never been rigor-

ously proven, formally or informally. Hence, its validity may not be immediately apparent when

considering extensions of the π-calculus. Contributing to the second challenge of the Concurrent

Calculi Formalization Benchmark — a set of challenges tackling the main issues related to the mech-

anization of concurrent systems — we present a formalization of this result for the fragment of the

π-calculus examined in the Benchmark. Our formalization is implemented in Beluga and draws

inspiration from the HOAS formalization of the LTS semantics popularized by Honsell et al. In pass-

ing, we introduce a couple of useful encoding techniques for handling telescopes and lexicographic

induction.

1 Introduction

At page 51 of their “bible” on the π-calculus [19], Sangiorgi & Walker state the Harmony Lemma,

regarding the relationship between the reduction semantics and the transitional one (LTS). The sketch of

the proof starts as follows:

Rather than giving the whole (long) proof, we explain the strategy and invite the reader to

check some of the details [. . . ]

While this informal style of proof, akin to the infamous “proof on a napkin” championed by de Millo

and colleagues1 , may be suitable for a (long) textbook, it might not be applicable to emerging calculi

with more unconventional operational semantics. Although the theorem is undisputed within the well-

established framework of the π-calculus, this assurance may not extend to these developing calculi.

In such instances, a more rigorous approach, potentially in the form of a machine-checked proof, is

advisable.

These considerations are of course not novel: they have been prominently argued for in the POPL-

Mark challenge [2] and subsequent follow-ups [1, 7]. The recent Concurrent Calculi Formalization

Benchmark [4] (CCFB in brief) introduces a new collection of benchmarks addressing challenges en-

countered during the mechanization of models of concurrent and distributed programming languages,

with an emphasis on process calculi. As with POPLMark, the idea is to explore the state of the art in the

formalization in this subarea, finding the best practices to address their typical issues and improving the

tools for their mechanization.

CCFB considers in isolation three aspects that may be problematic when mechanizing concurrency

theory: linearity, scope extrusion, and coinductive reasoning. Scope extrusion is, of course, the method

by which a process can transfer restricted names to another process, as long as the restriction can be

1“Social Processes and Proofs of Theorems and Programs”, CACM 22-5, 1979.
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safely expanded to include the receiving process. This phenomenon has been captured in two different,

yet equivalent ways of formulating the operational semantics of the π-calculus:

1. a reduction system, which avoids explicit reasoning about scope extrusion by using structural

congruence;

2. a labelled transition system, which introduces a new kind of action to handle extrusion directly: in

doing so, it breaks shared conventions such as α-equivalence.2

The second challenge in the Concurrent Calculi Formalization Benchmark (CCFB.2) consists in mecha-

nizing these two operational semantics and relating them via the aforementioned Harmony Lemma.

Obviously, we are not the first to address the mechanization of the π-calculus (although we seem to

be the first to tackle the Harmony result): given the challenges that it poses (various kind of binders with

somewhat unusual properties compared to the λ -calculus), there is a long tradition starting with [11] and

mostly developed with encodings based on first-order syntax such as de Brujin indexes — see [4] for a

short review of the literature w.r.t. scope extrusion. As often remarked, concrete encodings will get you

there, but not effortlessly: an estimation of 75% of the development being devoted to the infrastructure

of names handling is not uncommon [8]:

“Technical work, however, still represents the biggest part of our implementation, mainly

due to the managing of De Bruijn indexes [. . . ] Of our 800 proved lemmas, about 600 are

concerned with operators on free names.”

It is not surprising that specifications based on higher-order abstract syntax (HOAS) soon emerged,

first only as animations, see [12] in λProlog and [9] in LF. Moving to meta-reasoning, we can roughly

distinguish two main approaches:

1. “squeezing” HOAS into a general proof assistant: there is a plethora of approaches, but w.r.t the

π-calculus this has been investigated by Despeyroux [6] and then systematically by Honsell and

his colleagues, starting with [10] and then addressing other calculi;

2. the Pfenning-Miller “two-level approach” of separating the specification from the reasoning logic,

whose culmination, as far as the π-calculus is concerned, is the most elegant version presented

in [21] and later implemented in Abella.

We fall in the second camp and we offer a Beluga [18] mechanization of CCFB.2 together with a

detailed informal proof, filling all the gaps left by the quoted sketch. Along the way, we introduce (or

simply rediscover) a couple of Beluga tricks to encode telescopes (i.e. n-ary sequences of binders) and to

simulate lexicographic induction. We also prove another folk result, namely the equivalence between the

early and late LTS, as well as what is sometimes called “internal adequacy” [10], that is the equivalence

between the LTS encoding from the Honsell paper with the one in [21].

Informal and formal proofs in all their glory can be found here [5]. In the text, the statements of

informal lemmas and theorems are hyperlinked to their formalization in the repository. For reasons of

space, we will assume familiarity with the basic notions of the π-calculus as in [15], as well as a working

knowledge of Beluga, both of its syntax and more importantly of its approach to proof checking.

2 The π-Calculus and its Operational Semantics

In this section, we quickly recall the main notions involved, so as to make the paper self-contained. For

more details see [19].

2There are also intermediate approaches that save α-equivalence, such as Parrow’s LTS with structural congruence [15] or

Milner’s notion of abstraction and concretion as formalized for example in [3].
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2.1 Syntax

We assume the existence of a countably infinite set of names, ranged over by x,y, . . . We make no other

assumption about names, since the syntax of processes in CCFB.2 does not consider (mis)match. In fact,

to concentrate in isolation on scope extrusion, sums and replications are ignored as well:

P,Q ::= 0 | x(y).P | x̄y.P | (P | Q) | (νx)P

The input prefix x(y).P and the restriction (νy)P both bind the name y in P. Any other occurrence of

names in a process is free. The sets of free and bound names occurring in a process (fn(P) and bn(P)
respectively) are defined as usual.

In the mathematical presentation of the operational semantics, we adopt the following slightly weaker

variable convention3 : 1) given a process, it is possible to α-rename the bound occurrences of variables

within it; 2) the bound names of any processes or actions under consideration can be chosen different

from the names occurring free in any other entities under consideration.

2.2 Reduction Semantics

We define structural congruence (≡) and reduction (→) as the smallest binary relations over processes,

respectively satisfying the axioms in Fig. 1. The notation Q{y/z} represents capture-avoiding substi-

tution of y for z in the process Q. Note that we have chosen to present congruence as the compatible

refinement of the six basic axioms, rather than using process contexts as in [19], since the latter tend to

be problematic w.r.t. a HOAS formalization.

2.3 Labelled Transition System Semantics

The syntax of actions is the following:

α := x(y) | x̄y | x̄(y) | τ

In the input action x(y) and in the bound output action x̄(y), the name x is free and y is bound; in the free

output action x̄y, both x and y are free. The sets of free names, bound names and names occurring in an

action (bn(α), fn(α) and n(α) respectively) are defined accordingly. The transition relation ·
·
−→ · is the

smallest relation which satisfies the rules in Fig. 2.

Unlike the reduction semantics, the transitional semantics directly addresses scope extrusion via the

two S-CLOSE rules in interaction with S-OPEN: recall how the former rules are not closed under α-

conversion, since the bound name z must occur free in the other premise.

The LTS introduced here is the late semantics, as opposed to the early one adopted by the Benchmark.

However, as remarked in [15], “it is a matter of taste which semantics to adopt”. We indeed prove this

equivalence in Appendix A.

2.4 The Harmony Lemma

In [19], the Harmony Lemma reads as:

i. P ≡
α
−→ Q implies P

α
−→≡ Q.

3Variable conventions are used in a rather loose way in the literature, e.g. Parrow and Sangiorgi & Walker adopt the same

convention, but end up with different provisos in the operational semantics rules.
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PAR-ASSOC

P | (Q | R) ≡ (P | Q) | R

PAR-UNIT

P | 0 ≡ P

PAR-COMM

P | Q ≡ Q | P

SC-EXT-ZERO

(νx)0 ≡ 0

SC-EXT-PAR

x /∈ fn(Q)

(νx)P | Q ≡ (νx)(P | Q)

SC-EXT-RES

(νx)(νy)P ≡ (νy)(νx)P

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C-IN

P ≡ Q

x(y).P ≡ x(y).Q

C-OUT

P ≡ Q

x̄y.P ≡ x̄y.Q

C-PAR

P ≡ P′

P | Q ≡ P′ | Q

C-RES

P ≡ Q

(νx)P ≡ (νx)Q

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C-REF

P ≡ P

C-SYM

P ≡ Q

Q ≡ P

C-TRANS

P ≡ Q Q ≡ R

P ≡ R

—————————————————————————————————————————————

R-COM

x̄y.P | x(z).Q → P | Q{y/z}

R-PAR

P → Q

P | R → Q | R

R-RES

P → Q

(νx)P → (νx)Q

R-STRUCT

P ≡ P′ P′ → Q′ Q′ ≡ Q

P → Q

Figure 1: Congruence and reduction rules.

ii. P
τ
−→≡ Q iff P → Q.

The juxtaposition of symbols denotes relational composition (e.g. P ≡
α
−→ Q denotes P ≡ R and R

α
−→ Q

for some R). The first assertion is a direct consequence of Lemma 2.6, as detailed at page 6, which is

instrumental to prove the right-to-left direction of the equivalence result. The latter breaks down into the

following theorems:

1. Every transition through a τ action corresponds to a reduction;

2. Given a reduction of P to Q, P is able to make a τ-transition to some Q′ congruent to Q.

In the interest of setting the stage for anybody who wishes to give a solution to CCFB.2, we start by stat-

ing a few technical lemmas about substitutions that are used in both directions of the Harmony Lemma,

while being often left unsaid.

Lemma S1 Q{x/x} = Q.

Lemma S2 If x /∈ fn(Q), then Q{y/x} = Q.

These two lemmas are proved by induction on the structure of the process Q. A consequence of the latter

is the following: if x /∈ fn(Q), then P{y/x} | Q = (P | Q){y/x}.

Finally, we state a stability result for structural congruence under substitutions, only used in the

second direction of Harmony:

Lemma S3 If P ≡ Q, then P{y/x} ≡ Q{y/x}.

This lemma is proved by induction on the structure of the given derivation.



Cecilia & Momigliano 5

S-IN

x(z).P
x(z)
−−→ P

S-OUT

x̄y.P
x̄y
−→ P

S-PAR-L

P
α
−→ P′

bn(α) ∩ fn(Q) = /0

P | Q
α
−→ P′ | Q

S-PAR-R

Q
α
−→ Q′

bn(α) ∩ fn(P) = /0

P | Q
α
−→ P | Q′

S-COM-L

P
x̄y
−→ P′ Q

x(z)
−−→ Q′

P | Q
τ
−→ P′ | Q′{y/z}

S-COM-R

P
x(z)
−−→ P′ Q

x̄y
−→ Q′

P | Q
τ
−→ P′{y/z} | Q′

S-RES

P
α
−→ P′ z /∈ n(α)

(νz)P
α
−→ (νz)P′

S-OPEN

P
x̄z
−→ P′ z 6= x

(νz)P
x̄(z)
−−→ P′

S-CLOSE-L

P
x̄(z)
−−→ P′ Q

x(z)
−−→ Q′

P | Q
τ
−→ (νz)(P′ | Q′)

S-CLOSE-R

P
x(z)
−−→ P′ Q

x̄(z)
−−→ Q′

P | Q
τ
−→ (νz)(P′ | Q′)

Figure 2: Transition rules.

2.4.1 Theorem 1: τ-Transition Implies Reduction

The proof of the first direction relies on three key lemmas which describe rewriting (up to structural

congruence) of processes involved in input and output transitions.

Lemma 1.1 If Q
x(y)
−−→ Q′ then there exist a finite (possibly empty) set of names w1, . . . ,wn (with

x,y 6= wi ∀i = 1, . . . ,n) and two processes R,S such that Q ≡ (νw1) . . . (νwn)(x(y).R | S) and

Q′ ≡ (νw1) . . . (νwn)(R | S).

Lemma 1.2 If Q
x̄y
−→ Q′ then there exist a finite (possibly empty) set of names w1, . . . ,wn (with

x,y 6= wi ∀i = 1, . . . ,n) and two processes R,S such that Q ≡ (νw1) . . . (νwn)(x̄y.R | S) and

Q′ ≡ (νw1) . . . (νwn)(R | S).

Lemma 1.3 If Q
x̄(z)
−−→ Q′ then there exist a finite (possibly empty) set of names w1, . . . ,wn

(with x /∈ {z,w1, . . . ,wn}) and two processes R,S such that Q ≡ (νz)(νw1) . . . (νwn)(x̄z.R | S) and

Q′ ≡ (νw1) . . . (νwn)(R | S).

These three lemmas are proved by induction over the structure of the given transition. We observe

that the presence of a sequence of binders is not an issue in the informal presentation; on the other hand,

from the mechanization point of view, these sequences are challenging to encode in a framework where

the meta-level binder is unary.

Theorem 1 P
τ
−→ Q implies P → Q.

https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/2_input_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/3_free_output_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/4_bound_output_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/5_theorem1.bel
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The theorem is proved by induction on the structure of the given transition. If the latter consists

of an explicit interaction of processes in a parallel composition, we apply the aforementioned lemmas

to rewrite processes involved in specific transitions up to congruence; we then construct the desired

reduction through a chain of congruence and reduction rules.

Corollary 1.1 P
τ
−→≡ Q entails P → Q.

2.4.2 Theorem 2: Reduction Implies τ-Transition

The other direction starts with five technical lemmas regarding free and bound names in specific tran-

sitions. They are instrumental, together with the variable convention, to the firing of the appropriate

transitions.

Lemma 2.1 If P
x̄y
−→ P′, then x,y ∈ fn(P).

Lemma 2.2 If P
x(y)
−−→ P′, then x ∈ fn(P).

Lemma 2.3 If P
x̄(z)
−−→ P′, then x ∈ fn(P) and z ∈ bn(P).

Lemma 2.4 If P
α
−→ P′, x /∈ n(α) and x /∈ fn(P), then x /∈ fn(P′).

Lemma 2.5 If P ≡ P′, then x ∈ fn(P) ⇔ x ∈ fn(P′).

The first four lemmas follow by induction over the structure of the given transition. The last by

induction on the congruence judgment.

The next key ingredient is establishing that structural congruence is a strong late bisimulation.

Lemma 2.6 Let P ≡ Q.

1. If P
α
−→ P′, then there exists a process Q′ such that Q

α
−→ Q′ and P′ ≡ Q′.

2. If Q
α
−→ Q′, then there exists a process P′ such that P

α
−→ P′ and P′ ≡ Q′.

The two statements need to be proven at the same time by mutual induction over the derivation of the

congruence judgment and case analysis on the given transition.

Finally, a rewriting lemma for reduction, again proven by induction on the structure of the given

reduction judgment:

Lemma 2.7 If P → Q then there exist three names x,y and z, a finite (possibly empty) set of names

w1, . . . ,wn and three processes R1,R2 and S such that P ≡ (νw1) . . . (νwn)((x̄y.R1 | x(z).R2) | S) and

Q ≡ (νw1) . . . (νwn)((R1 | R2{y/z}) | S).

Theorem 2 P → Q implies the existence of a Q′ such that P
τ
−→ Q′ and Q ≡ Q′.

The proof follows immediately from the application of Lemmas 2.6 and 2.7.

3 Beluga Formalization

This section provides an overview of the formalization of the definitions and proofs introduced in the

previous section with the proof assistant Beluga. The complete formalization is accessible at [5].

https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/6_stepcong_lemma.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/7_reduction_rewriting.bel
https://github.com/GabrieleCecilia/concurrent-benchmark-solution/blob/main/code/8_theorem2.bel
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3.1 Syntax

Fig. 3 displays the syntax of names and processes. Since names are just an infinite set, we encode them

with an LF type nameswithout any constructor, which will be extended with new inhabitants dynamically

in the operational semantics. This is made possible by the declaration

schema ctx = names;

indicating that all relevant judgments involving open terms (processes) are formulated in contexts cate-

gorized by the above schema.

Processes are encoded using (weak) HOAS, as well trodden in the literature: input and restrictions

abstract over names, in particular the input process x(y).P is encoded by the term p_in X \y.(P y),

where the bound name y in P is represented by the implicit argument of the LF function \y.(P y).

As usual, α-renaming and capture-avoiding substitutions are automatically implemented by the meta-

language. From now on, semicolons and infix constructor declarations will be omitted from code snippets

for brevity.

LF names: type =

;

LF proc: type =

| p_zero: proc

| p_in: names → (names → proc) → proc

| p_out: names → names → proc → proc

| p_par: proc → proc → proc –-infix p_par 11 left.

| p_res: (names → proc) → proc

;

Figure 3: Encoding of names and processes.

Recall that LF types are not inductive. While the LF type names has no constructor, the contextual

type [g ⊢ proc], for g ∈ ctx, denotes the set of open processes built out of LF variables ranging over

names.

3.2 Reduction Semantics

Congruence and reduction are encoded by the type families cong and red respectively, as presented in

Fig. 4. As usual, we use universal quantification {x:names} to descend into binders, e.g. in the compati-

bility rule for restriction. Scope extension is realized in rule sc_ext_par by simply not having Q depend

on the restricted channel, hence meeting the side condition x /∈ fn(Q) in the SC-EXT-PAR automatically.

In the same vein, substitution in rule R-COM is encoded by meta-level β -reduction.

3.3 Labelled Transition System Semantics

We follow Honsell et al. [10] for the encoding of the late LTS semantics. We declare two different

relations for transitions via free and bound actions. The result of a free transition is a process, while the

result of a bound transition is a process abstraction: instead of explicitly stating the bound name involved

in the transition, that name is the argument of the aforementioned function. This is reflected by the

encoding of free and bound actions, which only mention the free names involved. Fig. 5 shows the types
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% Structural Congruence

LF cong: proc → proc → type =

% Abelian Monoid Laws for Parallel Composition

| par_assoc: cong (P p_par (Q p_par R)) ((P p_par Q) p_par R)

| par_unit: cong (P p_par p_zero) P

| par_comm: cong (P p_par Q) (Q p_par P)

% Scope Extension Laws

| sc_ext_zero: cong (p_res (\x.p_zero)) p_zero

| sc_ext_par: cong ((p_res P) p_par Q) (p_res (\x.((P x) p_par Q)))

| sc_ext_res: cong (p_res \x.(p_res \y.(P x y))) (p_res \y.(p_res \x.(P x y)))

% Compatibility Laws

| c_in: ({y:names} cong (P y) (Q y)) → cong (p_in X P) (p_in X Q)

| c_out: cong P Q → cong (p_out X Y P) (p_out X Y Q)

| c_par: cong P P’ → cong (P p_par Q) (P’ p_par Q)

| c_res: ({x:names} cong (P x) (Q x)) → cong (p_res P) (p_res Q)

% Equivalence Relation Laws

| c_ref: cong P P

| c_sym: cong P Q → cong Q P

| c_trans: cong P Q → cong Q R → cong P R

% Reduction

LF red: proc → proc → type =

| r_com: red ((p_out X Y P) p_par (p_in X Q)) (P p_par (Q Y))

| r_par: red P Q → red (P p_par R) (Q p_par R)

| r_res: ({x:names} red (P x) (Q x)) → red (p_res P) (p_res Q)

| r_str: P cong P’ → red P’ Q’ → Q’ cong Q → red P Q

Figure 4: Encoding of congruence and reduction.

f_act and b_act encoding free and bound actions and the two mutually defined type families fstep

and bstep which encode free and bound transitions respectively4 . Note that none of the side conditions

of the transition rules need to be explicitly stated, nor do we need the axioms and additional freshness

predicates as in [10].

HOAS encodings customarily come with an (informal) adequacy proof, ensuring that there is a com-

positional bijection between the mathematical model and its encoding (in canonical form). While this is

fairly obvious for processes, congruence and reduction, it is less so w.r.t. the LTS semantics. Luckily,

this has been carefully proven both in [10] and in [21] for a related version. We refer to those papers for

further details and to the repository for a Beluga proof of the “internal” adequacy of those two encodings.

3.4 The Harmony Lemma

One of the expected yet very much appreciated payoffs of a HOAS encoding is that most (in fact all but

Lemma 2.4) boilerplate lemmas about names, occurrences and substitution vanish. We are referring to

the substitution Lemmas S1—S3, as well as the free/bound names Lemmas 2.1, 2.2, 2.3 and 2.5.

4Interestingly, a similar approach is pursued by Cheney in his nominal encoding in αProlog, see

https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/examples/picalc.apl.

https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/examples/picalc.apl
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% Free Actions % Bound Actions

LF f_act: type = LF b_act: type =

| f_tau: f_act | b_in: names → b_act

| f_out: names → names → f_act | b_out: names → b_act

% Transition Relation

LF fstep: proc → f_act → proc → type =

| fs_out: fstep (p_out X Y P) (f_out X Y) P

| fs_par1: fstep P A P’ → fstep (P p_par Q) A (P’ p_par Q)

| fs_par2: fstep Q A Q’ → fstep (P p_par Q) A (P p_par Q’)

| fs_com1: fstep P (f_out X Y) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (P’ p_par (Q’ Y))

| fs_com2: bstep P (b_in X) P’ → fstep Q (f_out X Y) Q’

→ fstep (P p_par Q) f_tau ((P’ Y) p_par Q’)

| fs_res: ({z:names} fstep (P z) A (P’ z)) → fstep (p_res P) A (p_res P’)

| fs_close1: bstep P (b_out X) P’ → bstep Q (b_in X) Q’

→ fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

| fs_close2: bstep P (b_in X) P’ → bstep Q (b_out X) Q’

→ fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

and bstep: proc → b_act → (names → proc) → type =

| bs_in: bstep (p_in X P) (b_in X) P

| bs_par1: bstep P A P’ → bstep (P p_par Q) A \x.((P’ x) p_par Q)

| bs_par2: bstep Q A Q’ → bstep (P p_par Q) A \x.(P p_par (Q’ x))

| bs_res: ({z:names} bstep (P z) A (P’ z))

→ bstep (p_res P) A \x.(p_res \z.(P’ z x))

| bs_open: ({z:names} fstep (P z) (f_out X z) (P’ z)) → bstep (p_res P)(b_out X) P’

Figure 5: Encoding of actions and transition.

3.4.1 Theorem 1: τ-Transition Implies Reduction

We start with the encoding of Lemmas 1.1, 1.2 and 1.3. There are two issues, one standard, the other

slightly more challenging. For one, the conclusion of these lemmas includes an existential quantification,

and Beluga lacks such a construct; the usual workaround consists of defining a new type family which

encodes the existential quantification. Secondly, and more seriously, the statements refer to sequences

of binders (here restrictions), sometimes referred to as telescopes. We can give a combined solution to

these items by encoding them inductively, where the base case describes when the existential holds for

the empty sequence and the inductive one adds one more binder. More specifically for Lemma 1.1, we

say that the congruences (⋆) (Q ≡ (νw1) . . . (νwn)(x(y).R | S) and Q′ ≡ (νw1) . . . (νwn)(R | S)) hold for

two processes Q and Q′ iff one of the following holds:

i. Q ≡ x(y).R | S and Q′ ≡ R | S;

ii. Q ≡ (νw)P, Q′ ≡ (νw)P′ and the congruences (⋆) hold for P and P′.

We list the definition of the type family ex_inp_rew that encodes the above judgment; the types

ex_fout_rew and ex_bout_rew are defined analogously.

LF ex_inp_rew: proc → names → (names → proc) → type =

| inp_base: Q cong ((p_in X R) p_par S) → ({y:names} (Q’ y) cong ((R y) p_par S))

→ ex_inp_rew Q X Q’
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rec bs_in_rew: (g:ctx) [g ⊢ bstep Q (b_in X) \y.Q’[..,y]]

→ [g ⊢ ex_inp_rew Q X \y.Q’[..,y]] =

/ total b (bs_in_rew _ _ _ _ b) /

fn b ⇒ case b of

| [g ⊢ bs_in] ⇒ [g ⊢ inp_base (c_sym par_unit) \y.(c_sym par_unit)]

| [g ⊢ bs_par1 B1]:[g ⊢ bstep (P p_par R) (b_in X) (\y.(P’ p_par (R[..])))] ⇒
let [g ⊢ D1] = bs_in_rew [g ⊢ B1] in

let [g ⊢ D2] = bs_in_rew_par1 [g ⊢ R] [g ⊢ D1] in [g ⊢ D2]

| [g ⊢ bs_par2 B2]:[g ⊢ bstep (R p_par P) (b_in X) (\y.((R[..]) p_par P’))] ⇒
let [g ⊢ D1] = bs_in_rew [g ⊢ B2] in

let [g ⊢ D2] = bs_in_rew_par2 [g ⊢ R] [g ⊢ D1] in [g ⊢ D2]

| [g ⊢ bs_res \y.B[..,y]] ⇒
let [g,y:names ⊢ D1[..,y]] = bs_in_rew [g,y:names ⊢ B[..,y]] in

let [g ⊢ D2] = bs_in_rew_res [g,y:names ⊢ D1[..,y]] in [g ⊢ D2]

Figure 6: Proof of Lemma 1.1.

| inp_ind: Q cong (p_res P) → ({y:names} (Q’ y) cong (p_res (P’ y)))

→ ({w:names} ex_inp_rew (P w) X \y.(P’ y w)) → ex_inp_rew Q X Q’

We prove each lemma by defining a total recursive function which receives a contextual deriva-

tion of an input/free output/bound output transition respectively and returns a contextual object of the

corresponding existential type. We provide the proof term of the bs_in_rew function, which proves

Lemma 1.1, in Fig. 6; the functions encoding Lemmas 1.2 and 1.3 are omitted.

The proof proceeds by induction on the structure of the given assumption. If it has been obtained

through the S-IN rule, we are in the base case of the existential with no binders: hence, we conclude

immediately modulo symmetry of congruence. In case the input transition has been obtained through the

S-PAR-L rule, it can be rewritten as P | R
x(y)
−−→ P′ | R, with the transition B1: P

x(y)
−−→ P′ as hypothesis. In

such situation we can apply a recursive call of the bs_in_rew function to B1, obtaining an object D1 of type

ex_inp_rew encoding the rewriting for P and P′; to conclude, we appeal to the lemma bs_in_rew_par1

in order to unfold D1 and build the required existential object encoding the rewriting for P | R and P′ | R.

Here is the signature of the above lemma:

rec bs_in_rew_par1: (g:ctx) {R:[g ⊢ proc]} [g ⊢ ex_inp_rew Q X \y.Q’[..,y]]

→ [g ⊢ ex_inp_rew (Q p_par R) X \y.(Q’[..,y] p_par R[..])] = ...

The other two cases of the main proof follow the same pattern and require similar auxiliary lemmas.

We are now ready to discuss the proof of the main result of this section, namely that P
τ
−→ Q implies

P → Q (Theorem 1):

rec fstep_impl_red: (g:ctx) [g ⊢ fstep P f_tau Q] → [g ⊢ P red Q] = ...

The proof proceeds by induction on the derivation of [g ⊢ fstep P f_tau Q]. Mirroring the in-

formal proof, in certain subcases it is enough to apply a recursive call of the function on a structurally

smaller τ-transition and return the desired object of type [g ⊢ P red Q]. In the other subcases, we apply

the functions bs_in_rew, fs_out_rew and bs_out_rew on the given input/output/bound output transi-

tions, obtaining the corresponding objects of existential type, viz. the cited ex_inp_rew and its “siblings”

ex_fout_rew and ex_bout_rew. Then, we would like to conclude by applying some auxiliary functions

which unfold these objects and build the desired reduction. Here, we face a major hurdle, not so much

in writing down the proof terms, but in having them checked for termination, which is, after all, what
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guarantees that the inductive structure of the proof is correct. Let us see one of such lemmas, which

emerges in the subcase where a S-COM-L rule is applied:

rec fs_com1_impl_red: (g:ctx) [g ⊢ ex_fout_rew P1 X Y Q1]

→ [g ⊢ ex_inp_rew P2 X \x.Q2[..,x]]

→ [g ⊢ (P1 p_par P2) red (Q1 p_par Q2[..,Y])] = ...

The proof needs to consider both hypotheses, in order to unfold the two existential types – recall that the

telescopes force upon us an inductive encoding of those existentials. In other terms, verification of the

fact that this function is decreasing would need to appeal to a form of lexicographic induction.

Termination checkers are of course incomplete and adopt strict syntactic criteria to enforce it; in

particular, Beluga’s checker currently does not support lexicographic induction. One way out is to define

the fs_com1_impl_red function so that it is decreasing on the first argument only, and relies on an

auxiliary function addressing its base case that is decreasing on the second argument. The signature of

such a function is:

rec fs_com1_impl_red_base: (g:ctx) [g ⊢ P2 cong ((p_in X \x.R[..,x]) p_par S)]

→ [g,w:names ⊢ Q2[..,w] cong (R[..,w] p_par S[..])]

→ [g ⊢ ex_fout_rew P1 X Y Q1]

→ [g ⊢ (P1 p_par P2) red (Q1 p_par Q2[..,Y])] = ...

Once these lemmas are in place, the proof of the first direction of the Harmony Lemma follows

without any further drama.

3.4.2 Theorem 2: Reduction Implies τ-Transition

In the other direction, having HOAS disposed of most of the technical lemmas about names and sub-

stitutions, the workhorses are the reduction rewriting Lemma 2.7 and the congruence-as-bisimilarity

Lemma 2.6. Since the former does not introduce new ideas, we discuss it first.

Given its similarity to Lemmas 1.1–1.3, Lemma 2.7 is implemented with the same strategy: we

define an existential type ex_red_rew that inductively encodes the existence of the telescopes and the

two congruences stated in the conclusion of the lemma.

LF ex_red_rew: proc → proc → type =

| red_base: P cong (((p_out X Y R1) p_par (p_in X R2)) p_par S)

→ Q cong ((R1 p_par (R2 Y)) p_par S) → ex_red_rew P Q

| red_ind: P cong (p_res P’) → Q cong (p_res Q’)

→ ({w:names} ex_red_rew (P’ w) (Q’ w)) → ex_red_rew P Q

We then implement some auxiliary functions to unfold objects of the existential type ex_red_rew in

specific subcases, for example:

rec red_impl_red_rew_par: (g:ctx) {R:[g ⊢ proc]} [g ⊢ ex_red_rew P Q]

→ [g ⊢ ex_red_rew (P p_par R) (Q p_par R)] = ...

Having established those, it is straightforward to prove

rec red_impl_red_rew: (g:ctx) [g ⊢ P red Q] → [g ⊢ ex_red_rew P Q] = ...

by induction on the structure of the given reduction judgment.

Moving on to the proof of Lemma 2.6, there is a new technicality to address. We have seen how

in a HOAS setting provisos such as “x /∈ fn(P)” are realized by P being in the scope of a meta level

abstraction that binds x, but not actually depending on x. Sometimes (see [20] for other instances),

we have to convince our proof environment of this non-dependency, which is basically the content of
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Lemma 2.4, in words: “given a transition P
α
−→ Q where x does not occur free in P, then x does not occur

free in α and Q”. Since in Beluga judgments over open terms are encapsulated in the context where they

make sense, removing these spurious dependencies amounts to “strengthening” such a context, akin to

strengthening lemmas in type theory. The lemma more formally reads as:

If Γ,x : names ⊢ P
αx−→ Qx, then there are α ′,Q′ such that αx = α ′, Qx = Q′ and Γ ⊢ P

α ′

−→ Q′ (1)

Not only Beluga does not have existentials (nor conjunctions), but LF also has no built-in equal-

ity notion. However, this is easy to simulate via pattern unification over canonical forms, by defining

three type families encoding equality of processes, free actions and bound actions respectively. Process

equality is defined as:

LF eqp: proc → proc → type =

| prefl: eqp P P

Since we are now dealing with a property about a LF contextual object (the initial transition), the

statement in (1) has to be encoded at the computation level as an inductive type [17]. We list this

encoding, omitting the definition of its counterpart for bound transitions ex_str_bstep.

inductive ex_str_fstep: (g:ctx) [g,x:names ⊢ fstep P[..] A Q] → ctype =

| ex_fstep: {F:[g,x:names ⊢ fstep P[..] A Q]} [g ⊢ fstep P A’ Q’]

→ [g,x:names ⊢ eqf A A’[..]] → [g,x:names ⊢ eqp Q Q’[..]]

→ ex_str_fstep [g,x:names ⊢ F]

Note how non-occurrence is realized using weakening substitutions, i.e. P[..] signals that the process P

depends only on the variables mentioned in g, excluding x.

The strengthening lemma is implemented through the two following mutually recursive functions:

rec strengthen_fstep: (g:ctx) {F:[g,x:names ⊢ fstep P[..] A Q]}

→ ex_str_fstep [g,x:names ⊢ F] = ...

and rec strengthen_bstep: (g:ctx) {B:[g,x:names ⊢ bstep P[..] A \z.Q[..,x,z]]}

→ ex_str_bstep [g,x:names ⊢ B] = ...

The proof follows by a long but straightforward induction on the structure of the given transition.

To state Lemma 2.6, we again need to code the existential in its conclusion; however, since the

statement involves transitions through a generic action α , we actually require two new type families: one

for free transitions and one for bound transitions.

LF ex_fstepcong: proc → proc → f_act → proc → type =

| fsc: fstep Q A Q’ → P’ cong Q’ → ex_fstepcong P Q A P’

LF ex_bstepcong: proc → proc → b_act → (names → proc) → type =

| bsc: bstep Q A Q’ → ({x:names} (P’ x) cong (Q’ x)) → ex_bstepcong P Q A P’

The reader may wonder why the process P is mentioned in the fsc and bsc constructors, as it does not

play any role: indeed, it is a trick to please Beluga’s coverage checker when this definition is unfolded in

the rest of the development.

Lemma 2.6 is encoded through the definition of four mutually recursive functions: as the statement

involves transitions via a generic action α , the first two prove the result for free transitions, while the

last two demonstrate the result for bound transitions; moreover, since the proof is carried out by con-

currently establishing two symmetrical assertions, the odd functions prove the left-to-right statement,

while the even ones demonstrate the right-to-left statement. We present the signature of the first function

cong_fstepleft_impl_stepright, which proves the left-to-right assertion for free transitions:
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rec cong_fstepleft_impl_fstepright: (g:ctx) [g ⊢ P cong Q] → [g ⊢ fstep P A P’]

→ [g ⊢ ex_fstepcong P Q A P’] = ...

Mirroring the informal proof, this lemma is proved by a long induction on the structure of the given

congruence; in most of the subcases, case analysis of the given transition is performed as well.

A final ingredient for the proof of Theorem 2 is the auxiliary lemma:

rec red_rew_impl_fstepcong: (g:ctx) [g ⊢ ex_red_rew P Q]

→ [g ⊢ ex_fstepcong P P f_tau Q] = ...

The proof proceeds by induction on the structure of the given object of type [g ⊢ ex_red_rew P Q];

in both the base case and the inductive case, a key factor consists in the application of the function

cong_fstepright_impl_fstepleft.

We are ready to prove Theorem 2:

rec red_impl_fstepcong: (g:ctx) [g ⊢ P red Q] → [g ⊢ ex_fstepcong P P f_tau Q] =

/ total r (red_impl_fstepcong _ _ _ r) /

fn r ⇒ let [g ⊢ D1] = red_impl_red_rew r in

let [g ⊢ D2] = red_rew_impl_fstepcong [g ⊢ D1] in [g ⊢ D2]

Given r representing the reduction P → Q, we apply the function red_impl_red_rew to it

returning an object D1 of type [g ⊢ ex_red_rew P Q] that encodes the following congruences:

P ≡ (νw1) · · · (νwn)((x̄y.R1 | x(z).R2) | S) and Q ≡ (νw1) · · · (νwn)((R1 | R2{y/z}) | S), for some R1, R2,

S and w1, . . . ,wn. Finally, we invoke the auxiliary function red_rew_impl_fstepcong, which unfolds the

argument D1 and returns the desired object of type [g ⊢ ex_fstepcong P P f_tau Q].

4 Evaluation and Conclusions

The reader may wonder “Is that it?” We sympathize with the feeling: what is remarkable in this for-

malization is how (mostly) uneventful it has been. Once we had settled on using (weak) HOAS and a

specialized proof environment such as Beluga — which, given our lineage, was not much of a stretch —

the Honsell/Miller encoding of the labelled transition system removed all issues related to scope extru-

sion and Beluga’s remarkable conciseness did the rest, turning 30 pages of LATEX proofs, which still skip

many steps, into some 700 lines of proof terms.

Remarkably, the structure of the formal proof closely mirrors the informal one: having eliminated

the 7 technical lemmas thanks to the HOAS encoding, both proofs share the same 6 lemmas, proved in

the same fashion. Some parts of the formal proof are covered by 22 additional lemmas which deal with

the unfolding of the existential types,5 while another 4 lemmas result from the mutual recursion induced

by the encoding.

In our biased opinion, this uneventfulness does not trivialize the accomplishment: we have provided

a compact and elegant solution of a benchmark problem, which, after all, is supposed to be challenging:

the fact that this has not been a heroic feat is a testament to the merits of the HOAS encoding and to

the long line of research that has made meta-level reasoning over HOAS specifications possible. It also

suggests that, once we put on the HOAS “spectacles”, the binders of the π-calculus are not that different

from those of the λ -calculus, in the sense that the meta-level binder will gladly model scope extrusion,

under the right encoding.

5Given how widespread existential (and conjunctive) statements are in this development, it would be helpful if Beluga could

provide some syntactic sugar, similarly to Agda, and a way to unfold those definitions automatically.
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Beluga has shown to be a reliable system: we did stress the termination checker, with a heavy use

of mutually defined recursive functions. We managed to get around the current lack of support for

lexicographic induction; our technique could have broader applicability, for instance in verifying totality

results such as the admissibility of cut elimination that rely on nested induction for their termination

proofs [16]. We also established coverage, again getting around the minor glitch that we have mentioned

above in the proof of the right-to-left direction of the Harmony Lemma.

Since the benchmark is amenable to a weak HOAS encoding, this begs the question of why not

pursue its solution in a general proof assistant such as Coq. While weak HOAS is indeed consistent with

monotonic inductive types, it is well known that the full dependent function space of a theory such as the

Calculus of Constructions is incompatible with the intensional quantification featured by LF-like type

theories. Workarounds exist: the most successful one is the “Theory of Contexts” [10], where additional

predicates concerning freshness and non-occurrence of names are added to specifications such as of the

LTS. Further, ToC assumes some axioms regulating the properties of names and abstraction over names

(i.e. “contexts”) in order to reify what LF-like frameworks provide natively. To be fair, it is unclear to us

which role ToC would play in a Coq solution of CCFB.2, but for the rest of the Concurrent Benchmark,

the outcome is not pretty (believe us, we tried). Of course, there is no obstacle in abandoning HOAS for

concrete encodings and we are looking forward to comparing such solutions to ours.

Although CCFB.2 does not ask for it, we conjecture that it would be easy, albeit tedious, to extend our

solution to account for other features of the π-calculus, namely sums, replication and match. Mismatch,

which is handled in [10], is rather problematic in HOAS, since the systems that support it have no native

notion of negation.

The adoption of Beluga as a proof environment for this formalization is motivated by our endeavor

(together with Pientka’s group) to give an overall HOAS solution to all the challenges listed in CCFB,

which include type safety for (linear) session types and turning strong barbed bisimilarity into a congru-

ence. For this, Beluga is a strong candidate: in fact the type safety challenge is already in the bag, thanks

to the techniques developed in [20]. The coinduction part is more challenging, but we have a good track

record in a similar benchmark [14]. Solving the rest of CCFB in Beluga may also shed some light on the

role of the ∇ quantifier [13] as a meta-reasoning tool, compared to Beluga’s use of contextual LF as a

specification language.
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A Appendix: Late vs Early Transitions

An alternative to the late semantics presented in the paper is the early semantics. As its name suggests,

it is characterized by the fact that substitutions of names received in interaction are performed as soon

as possible, namely during the execution of the S-IN rule. The syntax of actions is the same as in the

late semantics; however, the name y occurring in an input action x(y) is considered to be free. As for

transitions, now denoted as
(−)
−−⇁, the rules S-IN, the two S-COM rules and the two S-CLOSE are replaced

by those in Fig. 7 (“right” rules are omitted for brevity). Note how the S-IN rule now exhibits the

substitution of the input name; conversely, in the S-COM rules, both of the names x and y occurring in

the actions of the given transitions must coincide and no substitution takes place in the conclusion.

S-IN

x(z).P
x(y)
−−⇁ P{y/z}

S-COM-L

P
x̄y
−⇁ P′ Q

x(y)
−−⇁ Q′

P | Q
τ
−⇁ P′ | Q′

S-CLOSE-L

P
x̄(z)
−−⇁ P′ Q

x(z)
−−⇁ Q′ z /∈ fn(Q)

P | Q
τ
−⇁ (νz)(P′ | Q′)

Figure 7: Early transition semantics rules.

In order to prove the equivalence of the two semantics, we follow Parrow’s approach in [15]: namely,

our objective is to demonstrate that the two semantics allow to infer the same τ-transitions. Both direc-

tions are achieved by induction on the depth of the inference of the given transitions and rely on some

additional lemmas, which state a correspondence between input/output transitions of the two semantics

as well. The only non-trivial correspondence lies between input (in the late semantics) and free input (in

the early semantics), which is defined as follows:

P
x(y)
−−⇁ Q iff there are Q′ and w such that P

x(w)
−−→ Q′ and Q = Q′{y/w}. (2)

We begin the Beluga formalization by encoding the two semantics in the same environment (Fig. 8).

The type f_act presents a new constructor f_in for free input actions in the early semantics; as for

transitions, the constructors expressing identical rules in the two semantics are omitted for brevity. We

observe that the ebs_in constructor representing bound input transitions in the early semantics cannot be

eliminated, since bound input transitions are needed as premises in the rules introduced by the efs_close

constructors. For consistency of notation, the types fstep and bstep for late transitions have been

renamed as late_fstep and late_bstep.

The next ingredient for the formalization of the semantics equivalence is the definition of the type

family ex_latebs, which encodes the existence of a late transition such as in the correspondence (2):

LF ex_latebs: proc → names → names → proc → type =

| lbs: late_bstep P (b_in X) \w.(Q’ w) → eqp Q (Q’ Y) → ex_latebs P X Y Q
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% Free Actions % Bound Actions

LF f_act: type = LF b_act: type =

| f_in: names → names → f_act | b_in: names → b_act

| f_out: names → names → f_act | b_out: names → b_act

| f_tau: f_act

% Early Transition Relation

LF early_fstep: proc → f_act → proc → type =

| efs_in: early_fstep (p_in X P) (f_in X Y) (P Y)

| efs_com1: early_fstep P (f_out X Y) P’ → early_fstep Q (f_in X Y) Q’

→ early_fstep (P p_par Q) f_tau (P’ p_par Q’)

| efs_com2: early_fstep P (f_in X Y) P’ → early_fstep Q (f_out X Y) Q’

→ early_fstep (P p_par Q) f_tau (P’ p_par Q’)

| efs_close1: early_bstep P (b_out X) P’ → early_bstep Q (b_in X) Q’

→ early_fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

| efs_close2: early_bstep P (b_in X) P’ → early_bstep Q (b_out X) Q’

→ early_fstep (P p_par Q) f_tau (p_res \z.((P’ z) p_par (Q’ z)))

...

and early_bstep: proc → b_act → (names → proc) → type =

| ebs_in: early_bstep (p_in X P) (b_in X) P

...

Figure 8: Encoding of actions and early transition.

We then list the signature of the functions finp_earlytolate and finp_latetoearly, encoding the

correspondence between free input transitions in the early semantics and input transitions in the late

semantics. The correspondence between the other types of actions is performed analogously with two

functions for each case; since their formalization is straightforward, it is omitted.

rec finp_earlytolate: (g:ctx) [g ⊢ early_fstep P (f_in X Y) Q]

→ [g ⊢ ex_latebs P X Y Q] = ...

rec finp_latetoearly: (g:ctx) {Y:[g ⊢ names]} [g ⊢ ex_latebs P X Y Q]

→ [g ⊢ early_fstep P (f_in X Y) Q] = ...

In the second statement, the input name Y needs to be passed as an explicit argument, otherwise Beluga

would not be able to reconstruct it during some further calls of this lemma. The proofs of both lemmas

are straightforward inductions on the given derivation.

We can now state the signature of the functions tau_earlytolate and tau_latetoearly, which

encode the equivalence of the two semantics:

rec tau_earlytolate: (g:ctx) [g ⊢ early_fstep P f_tau Q]

→ [g ⊢ late_fstep P f_tau Q] = ...

rec tau_latetoearly: (g:ctx) [g ⊢ late_fstep P f_tau Q]

→ [g ⊢ early_fstep P f_tau Q] = ...

The proof follows by induction on the given transition. In case the transition is obtained through a S-COM

or S-CLOSE rule, we apply the previously defined lemmas in order to turn an early input/output transition

into a corresponding late input/output transition and then conclude.
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