
To appear in EPTCS.
© G. Hondet
This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike License.

Expressing predicate sub-typing in 𝜆Π modulo theory

Gabriel Hondet
Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, Laboratoire Spécification et Vérification, 94235, Cachan, France

gabriel.hondet@inria.fr

A substantial number of proof assistants can be used to develop formal proofs, but a proof
developed in an assistant cannot, in general, be used in another one. This impermeability
engenders redundancy as each assistant is likely to ship its own version of a proof. It also
prevents adoption of formal methods by industries because of the lack of standards and the
difficulty to use adequately formal methods.

PVS is one of these proof assistants. More precisely, PVS is an environment comprising a
specification language, a type checker and a theorem prover. One of the specificity of PVS is
to be able to fuse type checking with theorem proving by requiring terms to validate arbitrary
predicates in order to be attributed a certain type. This ability to type terms only if they
validate some predicate is designated predicate sub-typing [6] and lifts the notion of set-theoretic
subsets to type systems.

To bridge the gaps between formal method communities, the Logipedia project aims at
providing an encyclopedia of formal proofs where proofs are independent from the system they
were developed in. Logipedia relies on the encoding of proofs into 𝜆Π-calculus modulo theory,
an extension of Edinburgh logical framework abbreviated 𝜆Π/𝑅, and one of its implementations,
Dedukti. The 𝜆Π-calculus is itself an extension of simply typed 𝜆 calculus with dependent
types allowing to write, for instance the type of vectors of a certain length, ∀𝑛 ∶ ℕ,𝑉 (𝑛). 𝜆Π/𝑅
extends 𝜆Π-calculus computation by the possibility to use arbitrary reduction rules instead of
being limited to the 𝛽 reduction of 𝜆-calculus.

The present work proposes an encoding of the fundamental features of predicate sub-typing
as used in PVS into Dedukti. All presented work is available as Dedukti files at https:
//github.com/Deducteam/personoj.

State of the art F. Gilbert formalised predicate sub-typing as a system named PVS-Cert
in [3]. PVS-Cert can be decomposed in layers: the first layer is 𝜆-HOL described in [1]. On top
of it, predicate sub-typing is added as a particular case of dependent pairs [4]. In this system,
the type of the dependent pair is noted {𝑥 ∶ 𝐴 ∣ 𝑎} where 𝐴 is a type and 𝑎 is a predicate that
can depend on 𝑥. An element of this type is a pair ⟨𝑡,ℎ⟩ where 𝑡 is of type 𝐴 and ℎ is a proof
that 𝑎[𝑥 ↦ 𝑡] is true.

Contribution We are able to encode PVS-Cert following the same layered structure. The
encoding of 𝜆-HOL is taken from [2] and adding dependent pairs raised no difficulty. On the
other hand, the reduction rules of PVS-Cert required more attention. Given a predicate evenp
and two terms ⟨2,ℎ⟩ and ⟨2,ℎ′⟩ with ℎ and ℎ′ two proofs that 2 validates evenp, we need proof
irrelevance on the second argument of pairs (ℎ and ℎ′) to avoid introducing two different terms
representing the “even number 2” that differ only by the proof that 2 is even. Encoding proof
irrelevance required to add a notion of protected symbols into Dedukti.

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://github.com/Deducteam/personoj
https://github.com/Deducteam/personoj


2 Expressing predicate sub-typing in LPMT

The encoding is put to test on a specification of rational numbers1. In particular, we define
ℕ∗ = {𝑛 ∶ ℕ ∣ 𝑛 ≠ 0} and ⋅/⋅ ∶ ℕ → ℕ∗ → ℚ+ to finally propose the proof of the theorem ∀𝑎 ∈
ℕ,∀𝑏 ∈ ℕ∗, 𝑎

𝑏 × 𝑏
1 = 𝑎

1 .
Programming with sub-typing usually involves sub-type polymorphism. PVS is no exception

but while in programming languages the sub-typing relation is decidable, it is not in PVS. The
use of sub-typing polymorphism requires the fulfillment of proof obligations —called TCC for
Type-Correctness Conditions— that are not decidable in general. The typing rules for sub-type
polymorphism are given in [5] and their encoding is not trivial. It requires the encoding of
several notions of casting between types of PVS and the generation of TCCs. In the end, sub-
type polymorphism is handled by a cast operator that allows to type a term 𝑡 of type 𝐴 as 𝐵
provided that the two following TCCs are proved, (i) 𝐴 and 𝐵 have the same “top-type”, (ii) all
predicates that are required to be of type 𝐵 are verified by 𝑡.

Type checking terms with predicate sub-typing can require to prove formulæ that may depend
on the context they are in. For instance, the term ∀𝑥, 1

𝑥 = 1
𝑥 is not type correct in PVS since

we cannot prove that 𝑥 ∈ ℕ∗ while ∀𝑥,𝑥 ≠ 0 ⇒ 1
𝑥 = 1

𝑥 is. PVS uses a notion of logical context in
which terms are type-checked that is transcribed into our encoding.

Encoding PVS-Cert, sub-type polymorphism and logical contexts lay the foundations to the
automatic translation of PVS specifications with their proofs to Dedukti. Such a translator is
currently being developed2. Further work is needed to translate specifications in their entirety.
The proofs of PVS are performed in a classical sequent calculus and use complex tactics that
cannot be translated directly into Dedukti. Many TCCs generated during type-checking appear
to be, if not trivial, automatically solvable by looking at already defined theorems. While
Dedukti 3 has a notion of unsolved goals, it is not capable yet of solving automatically these
goals. A first step would be to implement a Prolog-like search among defined symbols to
instantiate these goals.

References
[1] Henk Barendregt & Kees Hemerik (1990): Types in Lambda Calculi and Programming Languages. In

Neil D. Jones, editor: ESOP’90, 3rd European Symposium on Programming, Copenhagen, Denmark,
May 15-18, 1990, Proceedings, LNCS 432, Springer, pp. 1–35, doi:10.1007/3-540-52592-0_53.

[2] Ali Assaf and Guillaume Burel, Raphaël Cauderlier, David Delahaye, Gilles Dowek, Catherine
Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant & Ronan Saillard: Dedukti: a Logical
Framework based on the 𝜆Π-Calculus Modulo Theory.

[3] Frederic Gilbert (2018): Extending higher-order logic with predicate subtyping : application to
PVS. Theses, Université Sorbonne Paris Cité. Available at https://tel.archives-ouvertes.fr/
tel-02058937.

[4] Zhaohui Luo (1990): An extended calculus of constructions. Ph.D. thesis, University of Edinburgh,
UK. Available at http://hdl.handle.net/1842/12487.

[5] Sam Owre & Natarajan Shankar (1997): The Formal Semantics of PVS. Technical Report SRI-CSL-
97-2, Computer Science Laboratory, SRI International, Menlo Park, CA.

[6] John M. Rushby, Sam Owre & Natarajan Shankar (1998): Subtypes for Specifications: Predicate
Subtyping in PVS. IEEE Trans. Software Eng. 24(9), pp. 709–720, doi:10.1109/32.713327.

1https://github.com/Deducteam/personoj/blob/master/paper/rat.lp
2https://github.com/Deducteam/PVS/tree/prettyprint-dedukti

http://dx.doi.org/10.1007/3-540-52592-0_53
https://tel.archives-ouvertes.fr/tel-02058937
https://tel.archives-ouvertes.fr/tel-02058937
http://hdl.handle.net/1842/12487
http://dx.doi.org/10.1109/32.713327
https://github.com/Deducteam/personoj/blob/master/paper/rat.lp
https://github.com/Deducteam/PVS/tree/prettyprint-dedukti

