
Submitted to:
LFMTP 2020

c© Blanco, Miller and Momigliano
This work is licensed under the
Creative Commons Attribution License.

On the Proof Theory of Property-Based Testing of
Coinductive Specifications, or:

PBT to Infinity and beyond

Roberto Blanco
INRIA Paris, France

Dale Miller
INRIA Saclay

LIX, École Polytechnique, France

Alberto Momigliano
DI, Università degli Studi di Milano, Italy

Reasoning about infinite computations via coinduction and corecursion has an ever-increasing rele-
vance in formal methods and, in particular, in the semantics of programming languages, starting from [19]
(see [14] for a compelling example) and, of course, coinduction underlies (the meta-theory of) process
calculi. This importance was acknowledged by researchers in proof assistants, who promptly provided
support for coinduction and corecursion from the early ’90s on: see [22, 11] for the beginning of the
story concerning two popular frameworks.

It also became apparent that tools that search for refutations/counter-examples of conjectures before
attempting a formal proof are invaluable: this is particularly true in PL theory, where proofs tend to be
shallow but may have hundreds of cases. One such approach is property-based testing (PBT), which em-
ploys automatic test data generation to try and refute executable specifications. Pioneered by QuickCheck
for functional programming [9], it has now spread to most major proof assistants [6, 21].

In general, PBT does not extend immediately to testing coinductive specifications (an exception being
Isabelle’s Nitpick, which is, however, a counter-model generator). Extending Coq’s QuickChick [21] to
deal with Coq’s notion of coinduction via guarded recursion (which is generally seen to be a less than
satisfactory approach to coinduction) is particularly challenging. We are not aware of applications of
PBT to other forms of coinduction, such as co-patterns [1].

While PBT originated in the functional programming community, we have given in a previous pa-
per ([7]) a reconstruction of some of its features (operational semantics, different flavors of generation,
shrinking) in proof-theoretic terms using focused proof systems [2, 15] and Foundational Proof Certifi-
cates (FPC) [8]. An FPC can be used to define a range of proof structures, such as resolution refutations,
Herbrand disjuncts, tableaux, etc. In the context of PBT, the proof theory setup is rather simple. Con-
sider an attempt to find counter-examples to a conjecture of the form ∀x[(τ(x)∧P(x)) ⊃ Q(x)] where
τ is a typing predicate and P and Q are two other predicates defined using Horn clause specifications.
The negation of this conjecture is ∃x[(τ(x)∧P(x))∧¬Q(x)]. In searching for a focused proof of this
negation, the positive phase (which corresponds to the generation of possible counter-examples) is rep-
resented by ∃x and (τ(x)∧P(x)). That phase is followed by the negative phase (which correspond to
counter-example testing) and is represented by ¬Q(x). FPCs are simple logic programs that guide the
search for potential counter-examples using different generation strategies; they further capture diverse
features such as δ -debugging, fault isolation, explanation, etc. Such a range of features can be pro-
grammed as the clerks and experts predicates [8] that decorate the sequent rules used in an FPC proof
checking kernel: the kernel is also able to do a limited amount of proof reconstruction.

There are at least two ways to address potentially infinite computations in logical terms. We can
introduce infinite terms, rational or even irrational, in our semantics, as already accounted for in Lloyd’s
textbook and in [16]: this has recently been revisited in coinductive logic programming, see, for exam-
ple, [24] and the definitive [5]. Or we can concentrate on modeling infinite behavior of finite terms, for

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 PBT to Infinity and beyond

example, divergence of a given (finite) program. We choose the latter and this requires a logic stronger
than a logic programming interpreter, namely one with explicit rules for induction and coinduction.

A natural choice for such a logic is the fixed point logic G [10] and its linear logic cousin µMALL [3],
which are associated to the Abella proof assistant [4] and the Bedwyr model-checker. In fact, the latter
has already been used for related aims [12].

For a concrete example, consider a coinductive definition for CBV evaluation in the λ -calculus with
constants (following [14]). Using Bedwyr’s concrete syntax, this is written as:
Define coinductive coeval: tm -> tm -> prop by
coeval (con C) (con C);
coeval (fun R) (fun R);
coeval (app M N) V :=

exists R W, coeval M (fun R) /\ coeval N W /\ coeval (R W) V.

As is well-known, co-evaluation fails to be deterministic, since a divergent term such as Ω co-evaluates
to anything. We can confirm this by searching for a proof of the following formula:
exists E V1 V2, coeval E V1 /\ coeval E V2 /\ (V1 = V2 -> false)

Proving this query entails a way to generate such (finite) terms and then checking, with a crucial appeal
to the coinduction, that they are in the required relation.

Other applications of PBT include separating the various notions of equivalences in the lambda-
calculus and various process calculi: for example, applicative and ground similarity in PCFL [23], or
analogous standard results in the π-calculus. While similar goals have been achieved in the literature for
labeled transition systems (using, for example, the Concurrency Workbench), it is a remarkable feature
of the proof-theoretic setting that we can generalize PBT from a system without bindings (say, CCS) to
a system with bindings (say, the π-calculus). Such ease is possible since proof theory accommodates the
λ -tree syntax approach to treating bindings [17]: in particular, both Abella and Bedwyr include the ∇

quantifier [18].
In our current setup, we attempt to find counter-examples using Bedwyr to execute both the genera-

tion of test cases (controlled by using specific FPCs [7]) and the testing phase. Such an implementation of
PBT allows us to piggyback on Bedwyr’s facilities for efficient proof search via tabling for (co)inductive
predicates. The treatment of the negation in the testing phase is, as usual, a sticky point [20]. However, if
we identify, as we do, the proof theory behind model checking as based on the linear logic µMALL [13],
in that setting, occurrences of negations can be eliminated by using De Morgan duality and inequality.

References
[1] Andreas Abel, Brigitte Pientka, David Thibodeau & Anton Setzer (2013): Copatterns: programming infinite

structures by observations. In: POPL, ACM, pp. 27–38.
[2] Jean-Marc Andreoli (1992): Logic Programming with Focusing Proofs in Linear Logic. J. of Logic and

Computation 2(3), pp. 297–347, doi:10.1093/logcom/2.3.297.
[3] David Baelde (2012): Least and Greatest Fixed Points in Linear Logic. ACM Trans. Comput. Log. 13(1),

pp. 2:1–2:44.
[4] David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu & Yuting

Wang (2014): Abella: A System for Reasoning about Relational Specifications. Journal of Formalized Rea-
soning 7(2).

[5] Henning Basold, Ekaterina Komendantskaya & Yue Li (2019): Coinduction in Uniform: Foundations for
Corecursive Proof Search with Horn Clauses. In: ESOP, Lecture Notes in Computer Science 11423,
Springer, pp. 783–813.

http://dx.doi.org/10.1093/logcom/2.3.297


Blanco, Miller and Momigliano 3

[6] Jasmin Christian Blanchette, Lukas Bulwahn & Tobias Nipkow (2011): Automatic Proof and Disproof in Is-
abelle/HOL. In Cesare Tinelli & Viorica Sofronie-Stokkermans, editors: FroCoS, Lecture Notes in Computer
Science 6989, Springer, pp. 12–27. Available at http://dx.doi.org/10.1007/978-3-642-24364-6_2.

[7] Roberto Blanco, Dale Miller & Alberto Momigliano (2019): Property-Based Testing via Proof Reconstruc-
tion. In: PPDP, ACM, pp. 5:1–5:13.

[8] Zakaria Chihani, Dale Miller & Fabien Renaud (2017): A semantic framework for proof evidence. J. of
Automated Reasoning 59(3), pp. 287–330, doi:10.1007/s10817-016-9380-6.

[9] Koen Claessen & John Hughes (2000): QuickCheck: a lightweight tool for random testing of Haskell pro-
grams. In: Proceedings of the 2000 ACM SIGPLAN International Conference on Functional Programming
(ICFP 2000), ACM, pp. 268–279.

[10] Andrew Gacek, Dale Miller & Gopalan Nadathur (2011): Nominal abstraction. Information and Computa-
tion 209(1), pp. 48–73, doi:10.1016/j.ic.2010.09.004.

[11] Eduardo Giménez (1994): Codifying Guarded Definitions with Recursion Schemes. In P. Dybjer & B. Nord-
ström, editors: Selected Papers 2nd Int. Workshop on Types for Proofs and Programs, TYPES’94, Båstad,
Sweden, 6–10 June 1994, Lecture Notes in Computer Science 996, Springer-Verlag, Berlin, pp. 39–59.

[12] Quentin Heath & Dale Miller (2015): A framework for proof certificates in finite state exploration. In:
PxTP@CADE, EPTCS 186, pp. 11–26.

[13] Quentin Heath & Dale Miller (2019): A Proof Theory for Model Checking. J. Autom. Reasoning 63(4), pp.
857–885.

[14] Xavier Leroy & Hervé Grall (2009): Coinductive big-step operational semantics. Information
and Computation 207(2), pp. 284–304. Available at http://gallium.inria.fr/~xleroy/publi/
coindsem-journal.pdf.

[15] Chuck Liang & Dale Miller (2009): Focusing and Polarization in Linear, Intuitionistic, and Classical Logics.
Theoretical Computer Science 410(46), pp. 4747–4768.

[16] Michael J. Maher (1988): Complete Axiomatizations of the Algebras of Finite Rational and Infinite Trees. In:
3nd Symp. on Logic in Computer Science, pp. 348–357.

[17] Dale Miller (2018): Mechanized Metatheory Revisited. Journal of Automated Reasoning,
doi:10.1007/s10817-018-9483-3.

[18] Dale Miller & Alwen Tiu (2005): A proof theory for generic judgments. ACM Trans. on Computational
Logic 6(4), pp. 749–783.

[19] Robin Milner & Mads Tofte (1991): Co-induction in Relational Semantics. Theoretical Computer Science
87(1), pp. 209–220.

[20] Alberto Momigliano (2000): Elimination of Negation in a Logical Framework. In: CSL, Lecture Notes in
Computer Science 1862, Springer, pp. 411–426.

[21] Zoe Paraskevopoulou, Catalin Hritcu, Maxime Dénès, Leonidas Lampropoulos & Benjamin C. Pierce (2015):
Foundational Property-Based Testing. In Christian Urban & Xingyuan Zhang, editors: Interactive Theorem
Proving - 6th International Conference, ITP 2015, Proceedings, Lecture Notes in Computer Science 9236,
Springer, pp. 325–343.

[22] Lawrence C. Paulson (1997): Mechanizing Coinduction and Corecursion in Higher-order Logic. Journal of
Logic and Computation 7(2), pp. 175–204.

[23] A. M. Pitts (1997): Operationally Based Theories of Program Equivalence. In P. Dybjer & A. M. Pitts,
editors: Semantics and Logics of Computation.

[24] Luke Simon, Ajay Bansal, Ajay Mallya & Gopal Gupta (2007): Co-Logic Programming: Extending Logic
Programming with Coinduction. In Lars Arge, Christian Cachin, Tomasz Jurdziński & Andrzej Tarlecki,
editors: Automata, Languages and Programming, Springer Berlin Heidelberg, pp. 472–483.

http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/s10817-016-9380-6
http://dx.doi.org/10.1016/j.ic.2010.09.004
http://gallium.inria.fr/~xleroy/publi/coindsem-journal.pdf
http://gallium.inria.fr/~xleroy/publi/coindsem-journal.pdf
http://dx.doi.org/10.1007/s10817-018-9483-3

