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Beluga is a proof environment based on the logical framework LF that provides infrastruc-
tural support for representing formal systems and proofs about them. As a consequence,
meta-theoretic proofs are precise and compact. However, programmers write proofs as total
recursive programs. This can be challenging and cumbersome.

We present the design and implementation of Harpoon, an interactive proof environment
built on top of Beluga. Harpoon users develop proofs using a small, fixed set of tactics.
Behind the scenes, the execution of tactics elaborates a proof script that reflects the subgoal
structure of the proof. We model incomplete proofs using contextual variables to represent
holes. We give a sound translation of proof scripts into Beluga programs which allows us to
execute them. Proof scripts and programs seamlessly interact and can be used interchange-
ably.

We have used Harpoon for examples ranging from simple type safety proofs for MiniML
to normalization proofs including the recently proposed POPLMark reloaded challenge.

1 Introduction

Mechanizing metatheory about formal systems such as programming languages and logics plays
an important role in establishing trust in formal developments. One key question in this en-
deavour is how to represent variables, (simultaneous) substitution, assumptions, derivations
that depend on assumptions, and the proof state, as our choices may impact how easy or how
cumbersome it will be to develop proofs about formal systems.

Beluga [25, 23] is a proof environment which provides sophisticated infrastructure for im-
plementing formal systems based on the logical framework LF [13]. This allows programmers to
uniformly specify syntax, inference rules, and derivation trees using higher-order abstract syntax
(HOAS) and relieves users from having to build custom-support to manage variable binding, re-
naming, and substitution. Following the Curry-Howard correspondence, Beluga users develop
inductive metatheoretic proofs about formal systems by writing a total recursive dependently-
typed program by pattern matching on derivation trees. Proof checking then amounts to type
checking the user’s program. Beluga hence follows in the foot steps of proof checkers such as
Automath [16], Agda [17], and specifically Twelf [19].

While writing a proof as a dependently typed program is a beautiful idea, it also can be
challenging and cumbersome. This limits the wide spread use of dependently-typed programming
languages for mechanizing proofs in general. Hence, many proof assistants in this domain provide
some form of interaction: for example, Agda [17] supports leaving holes (questionmarks) and
writing partial programs which can later be refined using a fixed limited set of interactions.
However a clear specification and theoretical foundation of how these interactions transform
programs is largely missing. In Coq [2] users interactively develop a proof using tactics. Behind
the scenes, a sequence of tactic applications is elaborated into a dependently-typed program.
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Figure 1: Harpoon Design Overview

Ideally, applying successfully a tactic to a proof state should only result in a new valid, consistent
proof state, but this isn’t always the case: user-defined tactics for Coq constructed in the Ltac
language [8] are mostly unconstrained; it is Coq’s typechecker that verifies post hoc that the
program generated by the tactics is valid. A common additional caveat of tactic languages is
that often, the resulting proof script is brittle and unreadable.

In this paper, we present the design and implementation of Harpoon, an interactive proof
environment built on top of Beluga, where programmers develop proofs by a fixed set of tactics.
The user invokes a tactic in the context of a subgoal in order to transform, split, or solve it.
Our fixed set of tactics is largely inspired by similar systems such as Twelf [27] or Abella [11]
supporting introduction of assumptions, case-analysis, and inductive reasoning, as well as both
forward and backward reasoning styles. As Harpoon is built on top of Beluga, its tactics
can also refer to a Beluga programs to provide an explicit proof witness to justify a proof step.
The ability to seamlessly mix programming with command-driven interactive theorem proving is
particularly useful when appealing to a lemma and switching between proving and programming.
Finally, successful tactic application is guaranteed to transform a valid proof state into another
valid proof state. Harpoon’s command-driven front-end generates automatically as a result a
proof script that retains the subgoal structure. We think of a proof script as an intermediate
proof representation language to facilitate translation to other formats, such as into (executable)
Beluga programs as shown in this paper or perhaps eventually into a human-readable proof
format. Our specific contributions are the following:

• We present the design and implementation of Harpoon, an interactive command-driven
front-end of Beluga for mechanizing metatheoretic proofs. Starting from a user-specified
theory (including both its syntax and its judgments), users interactively develop metathe-
oretic proofs using tactics. In tutorial style, we develop a short proof in Sec. 2 by way of
giving a whirlwind tour of the main supported tactics in Harpoon.

• We define in Sec. 3.2 a proof script language that reflects the proof structure laid out by
the user and clearly separates forwards and backwards reasoning. We describe formally
the relation between interactive tactics and proof scripts in Sec. 3.3 and prove soundness of
interactive proof construction. We give a type-preserving translation from proof scripts to
Beluga programs in Sec. 3.4. This guarantees that proof scripts actually represent proofs
and allows proof scripts to be not only typechecked, but also executed. Fig. 1 summarizes
the connection among tactics, proof scripts, and Beluga programs.

• We characterize and reason about incomplete programs using contextual types. A variable
of such a type represents a hole in the proof, i.e. a statement to prove together with a
set of available assumptions. Our formalism of incomplete proofs is such that holes are
independent of each other and may be solved in any order. We show that incremental
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proof development amounts of successively applying contextual substitutions to eliminate
holes, while possibly introducing new ones.

• Harpoon is implemented as part of Beluga and is available at https://beluga-lang.
readthedocs.io/. We have used it for a range of representive examples from the Beluga
library, in particular type safety proofs for MiniML, normalization proofs for the simply-
typed lambda calculus [6], benchmarks for reasoning about binders [9, 10], and the recent
POPLMark Reloaded challenge [1]. These examples cover a wide range of aspects that
arise in the proof development such as complex reasoning with and about contexts, context
schemas, and substitutions.

2 Proof Development in Harpoon

We introduce the main features of Harpoon by considering two lemmas that play a central
role in proof of weak normalization of the simply-typed lambda calculus. First, the Termination
Property states that if well-typed term M’ halts and M reduces to M’, then M’ halts. Second, the
Backwards Closed Property states that if a well-typed term M’ is reducible and M reduces to M’,
then M is also reducible.

2.1 Initial setup: encoding the language

We begin by defining the simply-typed lambda-calculus in the logical framework LF [13] using
an intrinsically typed encoding. In typical HOAS style, lambda abstraction takes an LF function
representing the abstraction of a term over a variable. There is no case for variables, as they
are treated implicitly. We remind the reader that this is a weak, representational function
space – there is no case analysis or recursion, so only genuine lambda terms can be represented.

LF tp : type =
| unit: tp
| arr : tp → tp → tp;

LF tm : tp → type =
| lam : (tm T1 → tm T2) → tm (arr T1 T2)
| app : tm (arr T1 T2) → tm T1 → tm T2;

Free variables such as T1 and T2 are implicity universally quantified (see [21]) and program-
mers subsequently do not supply arguments for implicitly quantified parameters when using a
constructor.

With the syntax out of the way, we define a small-step operational semantics for the language.
For simplicity, we use a call-by-name reduction strategy and do not reduce under lambda-
abstractions.

LF step : tm T → tm T → type =
| s_app : step M M’ →

step (app M N) (app M’ N)
| s_beta : step (app (lam M) N) (M N);

LF steps : tm T → tm T → type =
| next : step M M’ → steps M’ N →

steps M N
| refl : steps M M;

Notice in particular that we use LF application to encode the object-level substitution in the
s_beta rule. We define a predicate val: tm T → type on well-typed terms expressing what it
means to be a value: v_lam: val (lam M). Last, we define a notion of termination: a term halts
if it reduces to a value. This is captured by the constructor halts/m.

LF halts : tm T → type = halts/m : val V → steps M V → halts M;

https://beluga-lang.readthedocs.io/
https://beluga-lang.readthedocs.io/
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2.2 Termination Property: tactics intros, split, unbox, and solve

As the first short lemma, we show the Termination Property, that if M’ is known to halt and
steps M M’, then M also halts. We start our interactive proof session by loading the signature and
defining the name of the theorem and the statement that we want to prove.

Name of theorem (empty name to finish): halts_step
Statement of theorem: [ ` step M M’] → [ ` halts M’] → [ ` halts M]

Beluga is a proof environment in which an encoded theory is clearly separated from its
metatheory. LF objects encoding the syntax or judgments from a theory are embedded within
Beluga using the “box” syntax [ ` ]. Furthermore, we embed such LF objects together with
the LF context in which they are meaningful [20, 24, 15]. We call such an object paired with its
context a contextual object. In this example, the LF context, written on the left of ` , is empty
as we consider closed LF objects.

Whereas a judgment of an encoded theory is represented as an LF type, a metatheoretic
statement is represented as a Beluga type. As is often the case, implications are modelled
using simple functions written with → . As before, the free variables M and M’ are implicitly
bound by Π-types at the outside, which correspond to universal quantification. In terms of
expressiveness, Beluga is comparable to a first-order logic with fixed points together with LF
as an index domain.

With theorem configuration out of the way, the proof begins with a single subgoal whose
type is simply the statement of the theorem under no assumptions. Since this subgoal has
a function type, Harpoon will automatically apply the intros tactic: first, the (implicitly)
universally quantified variables M, M’ are added to the metacontext; second, the assumptions
s : [` step M M’] and h : [` halts M’] are added to the computational context. Observe that
since M and M’ have type tm T, intros also adds T to the metacontext, although it is implicit in
the definitions of step and halts and is not visible. (See Harpoon example 1 Step 1.)

Step 1 Step 2 Step 3
Meta-context:

T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> split h

Meta-context:
T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)
M2 : ( ` tm T)
S : ( ` mstep M’ M2)
V : ( ` val M2)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> unbox s as S’

Meta-context:
T : ( ` tp)
M : ( ` tm T)
M’ : ( ` tm T)
M2 : ( ` tm T)
S : ( ` mstep M’ M2)
V : ( ` val M2)
S’ : ( ` step M M’)

Computational context:
s : [ ` step M M’]
h : [ ` halts M’]

[ ` halts M]
> solve

[` halts/m (next S’ S) V]

Harpoon example 1: Interactive session of the proof for the halts_step lemma.

The proof proceeds by inversion on h. Using the split tactic, we add the two new assumptions
S:(` steps M’ M2) and V:(` val M2) to the metacontext. (See Harpoon example 1 Step 1.) To
build a proof for [` halts M], we need to show that there is a step from M to some value M2. To build
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such a derivation, we use first the unbox tactic on the computation-level assumption s to obtain an
assumption S’ in the metacontext which is accessible to the LF layer. (See Harpoon example 1
Step 2.) Finally, we can finish the proof by supplying the term [ ` halts/m (next S’ S) V] (See
Harpoon example 1 Step 3.)

2.3 Setup continued: reducibility

We now proceed to define a set of terms reducible at a type T. All reducible terms are required
to halt, and terms reducible at an arrow type are required to produce reducible output given
reducible input. Concretely, a term M is reducible at type (arr T1 T2), if for all terms N:tm T1
where N is reducible at type T1, then (app M N) is reducible at type T2. Reducibility cannot be
directly encoded at the LF layer, as it is not merely describing the syntax tree of an expression or
derivation. Instead, we encode the set of reducible terms using the stratified type Reduce which
is recursively defined on the type T in Beluga (see [14]). Note that we write { } for explicit
universal quantification.
stratified Reduce : {T : (` tp)} [` tm T] → type =

| Unit: [` halts M] → Reduce [` unit] [` M]
| Arr : [` halts M] →

({N:(` tm T1)} Reduce [` T1] [` N] → Reduce [` T2] [` app M N])
→ Reduce [` arr T1 T2] [` M];

2.4 Backwards Closed Property: tactics msplit, suffices, and by

We now consider one of the key lemmas in the weak normalization proof, called the backwards
closed lemma, i.e. if M’ is reducible at some type T and M steps to M’, then M is also reducible at
T. We prove this lemma by induction on T. This is specified by referring to the position of the
induction variable in the statement.

Name of theorem: bwd_closed
Statement of theorem: {T : (` tp)} {M : (` tm T)} {M’ : (` tm T)}

[` step M M’] → Reduce [` T] [` M’] → Reduce [` T] [` M]
Induction order: 1

After Harpoon automatically introduces the metavariables T, M, and M’ together with an
assumption s : [` step M M’] and r : Reduce [` T] [` M’], we use msplit T to split the proof into
two cases (see Harpoon Proof 2 Step 1). Whereas split case analyzes a Beluga type, msplit
considers the cases for a (contextual) LF type. In reality, msplit is syntactic sugar for a more
verbose use the ordinary split tactic.

The case for T = b is straightforward (see Harpoon Proof 2 Step 2 and 3). First, we use the
split tactic to invert the premise r : Reduce [` b] [` M’]. Then, we use the by tactic to invoke
the halts_step lemma (see Sec. 2.2) to obtain an assumption h : [` halts M]. We solve this case
by supplying the term Unit h (Harpoon Proof 2 Step 3).

In the case for T = arr T1 T2, we begin similarly by inversion on r using the split tactic
(Harpoon Proof 3 Step 4). We observe that the goal type is Reduce [` arr T1 T2] [` M], which
can be produced by using the Arr constructor if we can construct a proof for each of the user-
specified types, [` halts M] and {N:(` tm T1)} Reduce [` T1] [` N] → Reduce [` T2] [` app M N]. Such
backwards reasoning is accomplished via the suffices tactic. The user supplies a term represent-
ing an implication whose conclusion is compatible with the current goal and proceeds to prove
its premises as specified (see Harpoon Proof 3 Step 5).
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Step 1 Step 2 Step 3
Meta-context:

T : ( ` tp )
M : ( ` tm T )
M’ : ( ` tm T )

Computational context:
s : [` step M M’]
r : Reduce [` T] [` M’]

Reduce [` T] [` M]
> msplit T

Meta-context:
M : ( ` tm b )
M’: ( ` tm b )

Computational context:
s : [` step M M’]
r : Reduce [` b] [` M’]

Reduce [` b] [` M]
> split r

Meta-context:
M : ( ` tm b )
M’: ( ` tm b )

Computational context:
s : [` step M M’]
h’: [` halts M’ ]
r : Reduce [` b] [` M’]

Reduce [` b] [` M]
> by halts_step s h’ as h;

solve Unit h

Harpoon example 2: Backwards closed lemma. Step 1: Case analysis of the type T; Steps 2
and 3: Base case (T = b).

Step 4 Step 5
Meta-context:

T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
r : Reduce [` arr T1 T2][` M’]

Reduce [` arr T1 T2][` M]
> split r

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2][` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]

Reduce [` arr T1 T2][` M]
> suffices by Arr
1> [` halts M]
2> {N : ( ` tm T1)}Reduce [` T1][` N]
→ Reduce [` T2][` app M N]

Harpoon example 3: Backwards closed lemma: Step Case

To prove premise 1>, we apply the halts_step lemma (Harpoon Proof 4 Step 6). As
for premise 2>, Harpoon first automatically introduces the variable N:(` tm T1) and the as-
sumption r1:Reduce [` T1] [` N], so it remains to show Reduce [` T2] [` app M N]. We deduce
r’:Reduce [` T2] [` app M’ N] using the assumption rn. Using s:[` step M M’], we build a deriva-
tion s’:[` step (app M N) (app M’ N)] using s_app. Finally, we appeal to the induction hypothesis.
Using the by tactic, we write out and refer to the recursive call to complete the proof (Harpoon
Proof 4 Step 7).

Note that Harpoon allows users to use underscores to stand for arguments that are uniquely
determined (see Harpoon Proof 4 Step 7). We enforce that these underscores stand for uniquely
determined objects in order to guarantee that the contexts and the goal type of every subgoal be
closed. This ensures modularity: solving one subgoal does not affect any other open subgoals.

Using the explained tactics, one can now prove the fundamental lemma and the weak nor-
malization theorem. For a more comprehensive description of this proof in Beluga see [5, 6].
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Step 6 Step 7
Meta-context:

T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2] [` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]

[` halts M]
> by halts_step s h’ as h

Meta-context:
T1 : (` tp)
T2 : (` tp)
M : (` tm (arr T1 T2))
M’ : (` tm (arr T1 T2))
N : (` tm T1)

Computational context:
s : [` step M M’]
rn : {N : ( ` tm T)} Reduce [` N][` T]
→ Reduce [` T2] [` app M’ N]

h’ : [` halts M’]
r : Reduce [` arr T1 T2][` M’]
r1 : Reduce [` T1] [` N]

Reduce [` T2] [` app M N]
> by (rn [` N] r1) as r’;

unbox s as S; by [` s_app S] as s’;
by (bwd_closed [` T2] _ _ s’ r’)
as ih

Harpoon example 4: Backwards closed lemma: Step Case – continued

2.5 Additional features

Our implementation of Harpoon supports several features not discussed in this section. Two
additional tactics are variants on split. First, the invert tactic splits on the type of a given
term, but checks that the split produces a unique case. Second, the impossible tactic verifies
that the split produces no cases, so the supplied term’s type is empty.

The strengthen tactic can be used to strengthen the contextual type of a given declaration
according to a type subordination analysis [31]. This tactic is essential in the completeness proof
for algorithmic equality [6].

We also support a number of tactics that do not contribute to the elaboration of the proof,
called administrative tactics. Many of these are for navigating and listing theorems and subgoals.
Besides navigation commands, we include an undo tactic for rolling back previous steps in a proof.

Our implementation also performs some rudimentary automation to detect available assump-
tions that match the current goal type. Already, this is quite convenient as it automatically
eliminates certain trivial subgoals from proofs.

3 A Logical Foundation for Interactive Theorem Proving

In this section we give a logical foundation for interactive command-driven theorem proving in
Beluga. In particular, we describe interactive commands and their relationship to proof scripts
which in turn can be compiled to Beluga programs.

3.1 Background: Beluga’s Programming Language

We begin by describing Beluga’s programming language where we can describe (inductive)
proofs as total recursive programs. From a logical perspective, Beluga programs provide wit-
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nesses for first-order inductive proofs over a specific index domain. In general, this index domain
can be natural numbers, strings, or lists [7, 32], although in Beluga, this index domain consists
of first-class contexts and (contextual) LF objects (see [4]). Keeping this in mind, we keep the
index domain abstract in the description of Beluga below. We abstractly refer to terms and
types in the index language by index term C and index type U .

Index type U ::= . . . Index context ∆ ::= · |∆,X:U
Index term C ::= . . . Index substitution θ ::= · | θ,C/X

Variables occurring in index terms are declared in an index context ∆. We use index substitutions
to model the runtime environment of index variables. Looking up X in the substitution θ returns
the index term C to which X is bound at runtime. The index context ∆ captures the information
that is statically available and is used during type checking.

In the previous example from Sec. 2, the index domain included the definitions for tp, tm A,
step M M, and steps M M. Recall that to make statements about those index domain objects, we
paired the objects (and type) together with the context in which they were meaningful. In
our grammar above, U refers to such a contextual type and C denotes a contextual object,
for example ( ` arr unit unit) is the contextual type of ( ` lam λx. x). Contextual objects may
contain index variables that are declared in ∆. For example, ( ` steps M M) is meaningful in the
index context ∆ = A:( ` tp), M:( ` tm A).

We do not describe here in full the index language, since it has been described elsewhere and
is not crucial for the understanding or our design of Harpoon; the interested reader is referred
to [30, 14]. Instead we list several relevant properties of the index language to be compatible
with our current presentation.
Type checking index terms. ∆ ` C⇐= U

Substitution principle. If ∆ ` θ⇐= ∆′ and ∆′ ` C⇐= U then ∆ ` [θ]C⇐= [θ]U .

Coverage. cov (∆;U) =
−−−−−−−−−−→
(Ck;θk;∆k;Γk) computes a covering set for U in the metacontext ∆ such

that for each k, the index pattern Ck satisfies ∆k ` Ck⇐= [θk]U . Moreover, it computes
any well-founded recursive calls and includes them as part of Γk (see [22]).

Below we describe the core fragment of Beluga. We do so in a bidirectional way, separating
terms that we check against a given type from those for which we synthesize a type. To keep the
presentation simple, we model (co)inductive and stratified types as constants. Types are simple
functions (implications), written as τ1→ τ2; dependent functions (universal quantification over
elements in the index domain), written as ΠX:U.τ ; boxed types, written as [U ]; and constants
b −→C used to model (co)inductive and stratified types. Here b stands for an indexed type family
and recall that U stands for a type from the index domain.

Base Types β ::= b −→C | [U ]
Types τ ::= β |ΠX:U.τ | τ1→ τ2
Checkable Terms e ::= ḡ | i | [C] | mlamX ⇒ e | fn x⇒ e | case i of−−−−−→pk⇒ ek

| let x= i in e | letboxX = i in e
Synthesizable Terms i ::= x | c | i C | i e | (e : τ)
Patterns p ::= [C] | c −→p | x
Context Γ ::= · | Γ,x:τ
Subgoal context Ω ::= · | Ω, g:(∆;Γ ` τ) | Ω, ḡ:(∆;Γ ` τ)
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Ω |∆;Γ ` e⇐= τ Beluga term e checks against type τ

Ω |∆,X:U ;Γ ` e⇐= τ

Ω |∆;Γ ` mlamX ⇒ e⇐= ΠX:U.τ
Ω |∆;Γ,x : τ1 ` e⇐= τ2

Ω |∆;Γ ` fn x⇒ e⇐= τ1→ τ2

Ω |∆;Γ ` i=⇒ τ

Ω |∆;Γ ` i⇐= τ

Ω |∆;Γ ` i=⇒ β cov (∆;Γ;β) =
−−−−−−−−−−→
(pk,θk,∆k,Γk)

for all k. Ωk |∆k;Γk ` ek⇐= [θk]τ

Ω,−→Ωk |∆;Γ ` case i of−−−−−→pk⇒ ek⇐= τ g : (∆;Γ ` τ) |∆;Γ ` g⇐= τ

Ω1 |∆;Γ ` i=⇒ τ ′ Ω2 |∆;Γ,x : τ ′ ` e⇐= τ

Ω1,Ω2 |∆;Γ ` let x= i in e⇐= τ

Ω1 |∆;Γ ` i=⇒ [U ] Ω2 |∆,X:U ;Γ ` e⇐= τ

Ω1,Ω2 |∆;Γ ` letboxX = i in e⇐= τ

Ω |∆;Γ ` i=⇒ τ Beluga term i synthesizes type τ

Γ(x) = τ

· |∆;Γ ` x=⇒ τ

Sig(c) = τ

· |∆;Γ ` c =⇒ τ

Ω |∆;Γ ` e⇐= τ

Ω |∆;Γ ` (e : τ) =⇒ τ

Ω |∆;Γ ` i=⇒ΠX:U. τ ∆ ` C⇐= U

Ω |∆;Γ ` i C =⇒ [C/X]τ
Ω1 |∆;Γ ` i=⇒ τ1→ τ2 Ω2 |∆;Γ ` e⇐= τ1

Ω1,Ω2 |∆;Γ ` i e=⇒ τ2

` Ω sgctx Ω is a valid subgoal context

` · sgctx
` Ω sgctx `∆ mctx ∆ ` τ type ∆ ` Γ ctx

` (Ω, ĝ : (∆;Γ ` τ)) sgctx where ĝ ∈ {g, ḡ}

Figure 2: Beluga’s bidirectional type system, and well-formedness of subgoal contexts.

Synthesizable terms include variables, constants, and simple and dependent function elimi-
nations. All synthesizable terms are checkable. Conversely, one uses a type annotation to embed
a checkable term as a synthesizable term. This embedding notably enables using a contextual
object as a case scrutinee.

Checkable terms include simple and dependent function abstraction (fn and mlam resp.),
boxed index objects [C], and a case expression. We also include for convenience two different
let-expressions, let x= i in e and letboxX = i in e, although both could be defined given the
other terms in the language.

Last, the syntax of checkable expressions contains contextual variables ḡ following [15, 3],
which we call subgoal variables. A subgoal variable represents a typed hole in the program that
remains to be filled by the programmer. It captures in its type (∆;Γ ` τ) the typechecking state
at the point it occurs: it remains to construct a term of type τ in the index context ∆ with the
assumptions in Γ. These subgoal variables are collected in a subgoal context Ω. Algorithmically,
we understand a subgoal context Ω not as an input to the typing judgments in Fig. 2 but rather
as an output: the set of holes in the program is computed by the judgment. This explains why
we must check a subgoal variable against a type τ . Observe that subgoal variables appear only
in the term language: this ensures that subgoals cannot refer to each other. Since subgoals are
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independent of each other, they may be solved in any order by the user. An expression is called
complete if it is free from subgoals, and incomplete otherwise.

Most of the typing rules in Fig. 2 are as expected. To typecheck a case expression, we infer
the type of the expression that we want to analyze, then generate a covering set consisting of
the pattern and the refinement substitution θ. We then verify that the given set of patterns
matches covering set using the primitive cov (∆;Γ;β) which in turn relies on coverage for index
objects cov (∆;U). Similar to the coverage primitive for index types, the coverage primitive for
computation-level base types also generates well-founded recursive calls and includes them as
part of Γk. We can think of Γk as an extension of Γ which includes any program variables from
the pattern and any well-founded recursive calls. Finally, we type check each branch taking into
account the refinement constraints that might arise from the pattern in addition to the context
Γk. We omit the rules for checking patterns since pattern typing mirrors expression typing.
As for the subgoal context, every rule’s conclusion merely collects all premise subgoal contexts
to propagate the subgoals downwards. Note that all subgoal variables are distinct and occur
exactly once.

We omit kinding rules for types and well-formedness rules for ∆ and Γ, but to emphasize
that each subgoal type cannot depend on other subgoal types, we include the well-formedness
rules for the subgoal context Ω in Fig. 2.

3.2 Harpoon Script Language

To build proofs interactively, we introduce interactive commands, called actions, which are typed
by the user into the Harpoon interactive prompt. An action is executed on a particular subgoal
and eliminates or transforms it, while possibly introducing new subgoals.

Actions α ::= intros | solve e | by i as x | unbox i asX | split i | suffices i by
−−→
k : τ

We consider here a subset of the tactics we support in our implementation of Harpoon:
intros introduces a series of assumptions; solve provides an explicit proof witness/term to
close the current subgoal; by allows programmers to refer to a lemma, introduce an intermediate
result, or use an induction hypothesis, and bind the result to an intermediate program variable;
unbox is the same as by , but it binds the result as an index variable; split generates a covering
set of cases to consider; suffices allows programmers to reason backwards via a lemma or a
constructor.

Behind the scenes, the interactive execution of tactics incrementally builds a (partial) proof
script. This script reflects the structure of the proof very closely, and the core constructs of the
proof script language closely resemble the syntax of actions.

Proof Script P ::= g |D | by i as x;P | unbox i asX;P
Directives D ::= solve e | intros {∆;Γ ` P} | split i as

−−−−−−−−−→
{∆k;Γk ` Pk}

| suffices by i to show
−−−−−−−−−→
(k> τk as Pk)

We give the typing rules for partial Harpoon proof scripts in Fig. 3. In its simplest form, a
proof script P is either a subgoal variable g or a directive D that describes how to prove a given
goal. The understanding of subgoal variables here is the same as in the previous section: it is
a contextual variable of type (∆;Γ ` τ), representing the goal τ together with its index domain
context ∆ and assumptions Γ. To distinguish subgoal variables that stand for proofs from those



J. Errington et al. 11

that stand for programs, we write g rather than ḡ. As before, subgoal variables cannot depend
on other subgoal variables.

We extend a proof script using by or unbox to introduce new assumptions. The unbox
construct is used to introduce a new index variable by unboxing the result of a given Beluga
term i, often an assumption from Γ. The by construct is used both for invoking a lemma, intro-
ducing an intermediate result, and for appealing to an induction hypothesis, extending Γ with
a new variable representing the invocation. Checking that appeals to induction hypotheses are
well-founded proceeds simply by looking up the appeal in Γ, as splitting additionally generates
valid appeals and extends Γ with them.

Ω |∆;Γ `P P ⇐= τ Partial proof script P corresponding to theorem τ

Ω1 |∆;Γ ` i=⇒ τ ′ Ω2 |∆;Γ,x:τ ′ `P P ⇐= τ

Ω1,Ω2 |∆;Γ `P by i as x;P ⇐= τ

Ω1 |∆;Γ ` i=⇒ [U ] Ω2 |∆,X:U ;Γ `P P ⇐= τ

Ω1,Ω2 |∆;Γ `P unbox i asX;P ⇐= τ

g : (∆;Γ ` τ) |∆;Γ `P g⇐= τ

Ω |∆;Γ `D D⇐= τ

Ω |∆;Γ `P D⇐= τ

Ω |∆;Γ `D D⇐= τ Directive D establishes theorem τ

Ω |∆;Γ ` e⇐= τ

Ω |∆;Γ `D solve e⇐= τ

g : (∆′;Γ′ ` β) |∆;Γ ` τ  e Ω |∆′;Γ′ `P P ⇐= β

Ω |∆;Γ `D intros {∆′;Γ′ ` P}⇐= τ

Ω |∆;Γ ` i=⇒ β cov (∆;Γ ` β) =
−−−−−−−−−→
( ;θk;∆k;Γk) ∀k. Ωk |∆k;Γk `P Pk⇐= [θk]τ

Ω,
⋃
kΩk |∆;Γ `D split i as

−−−−−−−−−→
{∆k;Γk ` Pk}⇐= τ

Ω |∆;Γ ` i=⇒Π∆′. τ ′n→ . . .→ τ ′1→ τ ′0 ∆ ` (id∆,θ) : (∆,∆′) ∆ ` [θ]τ ′0 = τ0
for all k ∈ [1,n] ∆ ` [θ]τ ′k = τk Ωk |∆;Γ `P Pk⇐= τk

Ω,
⋃
kΩk |∆;Γ `D suffices by i to show

−−−−−−−−−→
(k> τk as Pk)⇐= τ0

Figure 3: The type system for Harpoon proofs and directives

There are four different directives we can use in a proof. The simplest directive, solve e,
merely ends a proof script by giving a proof term e as a witness of the appropriate type. To
introduce hypotheses into the index context ∆ and the context Γ, we use intros {∆′;Γ′ ` P ′}
where ∆′;Γ′ are extensions of ∆ and Γ. The new goal type τ ′ and the extended contexts ∆′;Γ′
are computed from the current subgoal by unrolling it as in Fig. 4. At the same time as we are
unrolling the type (formula) and building a partial proof script, we also build a partial program
witness. This links already proof scripts to programs and we elaborate the full translation in
Sec. 3.4. By construction, the resulting partial program expression is well-typed. The unrolling
of a type stops once we reach a base type β, i.e. it is either [U ] (a contextual LF type) or a
stratified or recursive type b −→C .

The directive split breaks up the proof into cases, one for each constructor of the type τ ′ of
the term i being split on. The cov primitive computes a covering set of cases and generates well-
founded recursive calls based on the user-defined termination measure (see [22]). Each computed
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g : (∆′;Γ′ ` τ ′) |∆;Γ ` τ  e
Beluga type τ unrolls to τ ′ in the extended meta-context ∆′
and computation context Γ′.

g : (∆;Γ ` β) |∆;Γ ` β g

g : (∆′;Γ′ ` β) |∆,X:U ;Γ ` τ  e

g : (∆′;Γ′ ` β) |∆;Γ `ΠX:U.τ  mlamX ⇒ e

g : (∆′;Γ′ ` β) |∆;Γ,x:τ1 ` τ2 e

g : (∆′;Γ′ ` β) |∆;Γ ` τ1→ τ2 fn x⇒ e

Figure 4: Unrolling a Beluga type. By design, this judgment closely mirrors typing and a
soundness property holds: if g : (∆′;Γ′ ` β) |∆;Γ ` τ  e, then g : (∆′;Γ′ ` β) |∆;Γ ` e⇐= τ .

4-tuple contains the pattern pk (unused here, but used and explained in Sec. 3.4), a refinement
substitution θk such that ∆k ` θk : ∆, and contexts ∆k and Γk. The proof is then decomposed
into multiple branches, one for each k. Each branch may introduce new assumptions, namely
subderivations, and may refine other assumptions via the substitution θk. It is also possible for
split to produce no cases, which corresponds to an elimination principle for empty types.

Last, the suffices directive reasons backwards by introducing new proof obligations based
on what it takes to establish the current goal. For simplicity, we only consider here types of the
form Π∆′.τ ′n→ . . .→ τ ′1→ τ ′0. If the current goal type ∆ ` τ0 is an instance of the target type
τ ′0, i.e. there exists a substitution θ s.t. ∆ ` θ : ∆′ and [θ]τ0 = τ0, then the proof is complete if
we can construct, for each k, a Pk fullfilling the stated proof obligation [θ]τ ′k. In practice, θ is
computed by unification given both the goal type τ0 and the target type τ ′0.

3.3 Interactive Proof Development in Harpoon

We describe typing of actions and their elaboration into partial proof scripts in Fig. 5. By design,
this process is immediate: each action is simply elaborated into its corresponding construct in
the proof script language, using subgoal variables where appropriate to explicitly represent
outstanding proof obligations.

Multiple actions can be sequenced to form an interactive session ᾱ. A session is an idealized
representation of how the user interacts with the proof assistant.

Session ᾱ ::= · | α,ᾱ

We describe typing for sessions also in Fig. 5. Each action in a session is executed on a subgoal
variable to eliminate it. This elimination depends on whether the variable stands for a proof,
or for a program. In the former case, we obtain by action typing a partial proof P ′ that we
simply substitute for g. In the latter case, we translate the proof P ′ to an expression e (see
Sec. 3.4) before substituting e for ḡ. Since the partial proof script generated by the execution
of an action is well-typed and both forms of subgoal substitution preserve types, we have that
sessions preserve types.
Theorem 1 (Session Soundness). 1. If ∆;Γ ` α : τ Ω ` P , then Ω |∆;Γ `P P ⇐= τ .

2. If Ω |∆;Γ `PP ⇐= τ and Ω `P ᾱ Ω′ `P ′, then Ω′ |∆;Γ `PP
′⇐= τ .

Proof. 1. By a simple case analysis on the given derivation. 2. By straightforward induction
using (1) and the subgoal substitution property.
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∆;Γ ` α : τ Ω ` P
Command α applied to subgoal (∆;Γ ` τ) produces an incom-
plete proof script P with open subgoals Ω.

Ω |∆;Γ ` e=⇒ τ

∆;Γ ` solve e : τ Ω ` solve e

g : (∆′;Γ′ ` β) |∆;Γ ` τ  e

∆;Γ ` intros : τ g : (∆′;Γ′ ` β) ` intros {(∆′;Γ′ ` β) ` g}

Ω |∆;Γ ` i=⇒ τ ′

∆;Γ ` by i as x : τ Ω,g : (∆;Γ,x : τ ′ ` τ) ` by i as x;g

Ω |∆;Γ ` i=⇒ β cov (∆;Γ;β) =
−−−−−−−−−→
( ;θk;∆k;Γk)

∆;Γ ` split i : τ Ω,
−−−−−−−−−−−−−−→
gk : (∆k;Γk ` [θk]τ) ` split i as

−−−−−−−−−→
{∆k;Γk ` gk}

Ω |∆;Γ ` i=⇒Π∆′.τ ′n→ . . .→ τ ′1→ τ ′0 ∆ ` θ : (∆,∆′) ∆ ` [θ]τ ′k = τk ∆ ` [θ]τ ′0 = τ0

∆;Γ ` suffices i by−→τk : τ0 Ω,
−−−−−−−−−−→
gk : (∆;Γ ` τk) ` suffices by i to show

−−−→
k> gk

Ω ` P ᾱ Ω′ ` P ′
Sequence of actions ᾱ transforms proof script P with subgoals
Ω into proof script P ′ with subgoals Ω′.

Ω ` P · Ω ` P
∆;Γ ` α : τ Ω2 ` P ′ Ω1,Ω2 ` [P ′/g]P ᾱ Ω3 `Q

Ω1,g : (∆;Γ ` τ) ` P α,ᾱ Ω3 `Q

∆;Γ ` α : τ Ω2 ` P ′ Ω2 |∆;Γ `P P ′⇀ e⇐= τ Ω1,Ω2 ` [e/ḡ]P ᾱ Ω3 `Q
Ω1, ḡ : (∆;Γ ` τ) ` P α,ᾱ Ω3 `Q

Figure 5: Typechecking interactive actions and elaboration into partial proof scripts.

3.4 Translation

The translation in Fig. 6 from proofs to Beluga programs is straightforward: unbox i as X
becomes a letbox expression and by i as x becomes a let expression. As for subgoal variables,
we replace g with ḡ, illustrating that outstanding proof obligations have been transformed
into program holes. The subgoal context in the translation judgment, being again an output,
represents the subgoal variables present in the output term. Hence, it contains only program
subgoal variables, of the form ḡ.

The translation of directives is similarly direct. For intros, we already built an incomplete
expression e when we were unrolling the type τ , so it suffices to translate P to an expression e′

and perform a substitution. The soundness of unrolling and the subgoal substitution property
ensure that this preserves types. The split directive translates to a case-expression in Beluga,
making use of the patterns produced by cov. Finally the suffices directive translates into a
function application. It is easy to show that the translation is total and type-preserving.
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Ω |∆;Γ `P P ⇀ e⇐= τ Proof P is translates to Beluga term e

Ω |∆;Γ `D D⇀ e⇐= τ

Ω |∆;Γ `P D⇀ e⇐= τ

Ω1 |∆;Γ ` i=⇒ τ ′ Ω2 |∆;Γ,x : τ ′ `P P ⇀ e⇐= τ

Ω1,Ω2 |∆;Γ `P by i as x;P ⇀ let x= i in e⇐= τ

ḡ : (∆;Γ ` τ) |∆;Γ `P g ⇀ ḡ⇐= τ

Ω1 |∆;Γ ` i=⇒ [U ] Ω2 |∆,X:U ;Γ `P P ⇀ e⇐= τ

Ω1,Ω2 |∆;Γ `P unbox i asX;P ⇀ letboxX = i in e⇐= τ

∆;Γ `D D⇀ e⇐= τ Directive D translates to Beluga term e

Ω |∆;Γ ` e⇐= τ

Ω |∆;Γ `D solve e ⇀ e⇐= τ

g : (∆′;Γ′ ` τ ′) |∆;Γ ` τ  e Ω |∆′;Γ′ `P P ⇀ e′⇐= τ ′

Ω |∆;Γ `D intros {∆′;Γ′ ` P}⇀ [e′/g]e⇐= τ

Ω |∆;Γ ` i=⇒ β cov (∆;Γ;β) =
−−−−−−−−−−→
(pk;θk;∆k;Γk) for all k. Ωk |∆k;Γk `P Pk⇀ ek⇐= [θk]τ

Ω,
⋃
kΩk |∆;Γ `D split i as

−−−−−−−−−→
{∆k;Γk ` Pk}⇀ case i of−−−−−→pk⇒ ek⇐= τ

Ω |∆;Γ ` i=⇒Π∆′. τ ′n→ . . .→ τ ′1→ τ ′0 ∆ ` θ : ∆,∆′
∆ ` [θ]τ ′k = τk Ωk |∆;Γ `D Pk⇀ ek⇐= τk

Ω,
⋃
kΩk |∆;Γ `D suffices i by−−−−−→τk as Pk⇀ i

−→
Cj
−→ek ⇐= τ0

where θ = C1/X1, . . .Cm/Xm

Figure 6: The translation from a Harpoon proof script to a Beluga program.

4 Evaluation

One should be able to use Harpoon to prove anything that one could prove in Beluga. A
proper completeness theorem is for now too complex1, so instead we have replicated a number
of case studies originally proven as functional programs in Beluga.

Case study Main feature tested
MiniML value soundness Automatic solving of trivial goals
MiniML compilation completeness Unboxing program variables
STLC type preservation Automatic solving of trivial goals
STLC type uniqueness Open term manipulation
STLC weak normalization Advanced splitting
STLC strong normalization [1] Large development
STLC alg. equality completeness [6] Large development

Table 1: Summary of proofs ported to Harpoon from Beluga.

The first four examples are purely syntactic arguments that proceed by straightforward
induction. The remaining examples involve more sophisticated features from Beluga’s compu-
tation language such as inductive and stratified types used to encode logical relations.

1Beluga’s support for deep pattern matching complicates a potential completeness proof.
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Recreating these case studies in Harpoon provided us with insight as to future work re-
garding automation: proofs for the syntactic examples tend to proceed by case analysis on the
induction variable, inverting any other assumptions when possible, invoking available induction
hypotheses, and applying a few inference rules. This recipe could be (partially) automated.

The STLC strong normalization and algorithmic equality completeness examples are larger
developments, totalling 38 and 26 theorems respectively. Further, these case studies make use
of Beluga’s first-class substitutions, contexts, and variables. In particular, these case studies
both involve splitting on contexts, reasoning about object-language variables, and exploiting the
built-in equational theory of substitutions.

5 Related work & conclusion

The Hazelnut system is similar to Harpoon in that its metatheory formally describes partial
programs and the user interactions that construct such a program [18]. Whereas Hazelnut con-
centrates on programming, Harpoon is an interface to Beluga, a proof assistant. Hazelnut’s
edit actions construct a simply-typed program by successively filling holes, and types in Hazelnut
may also contain holes that are refined by edit actions.

Abella is similar to the Beluga project more broadly in that it is a domain-specific language
using HOAS for mechanizing metatheory [11, 12]. Its theoretical basis differs from Beluga’s,
however, as it extends first-order logic with a ∇ quantifier to express properties about variables.
Contexts and simultaneous substitutions are expressed as inductive definitions, but since they are
not first-class one must separately establish properties about them, regarding e.g. substitution
composition and context well-formedness. Interactive proof development in Abella follows the
traditional model: the proof state is manipulated using tactics drawn from a fixed set. No proof
object that witnesses the theorem is produced.

The tactic languages of VeriML [28, 29] and Coq stand in contrast to Harpoon’s, as theirs
may be extended. In VeriML, one uses an ML-like computation language to define tactics
that manipulate objects from its underlying logic language. This computation language is very
expressive, including such features as nontermination and mutable references. However, its
management of metatheoretic concerns such as substitutions and contexts is lower-level: one
must explicitly model them, e.g. using lists. As for Coq, its Ltac language [8] is quite unrestricted
in its power, so Coq’s typechecker must verify separately any term built by an Ltac program.

In conclusion, we have presented Harpoon, an interactive command-driven front-end of
Beluga for mechanizing metatheoretic proofs. Users develop proofs using interactive actions
that elaborate a proof script behind the scenes. This elaboration’s metatheory shows that all
intermediate partial proofs are well-typed with respect to a context of outstanding subgoals
to resolve and that proof scripts can soundly be translated to Beluga programs. This devel-
opment relies crucially on reasoning about partial programs, which we represent as containing
contextual variables, called subgoal variables, that capture the current typechecking state. We
have evaluated Harpoon on a number of case-studies, ranging from purely syntactic arguments
to logical relations.

In the future, we aim to improve the automation capabilities of Harpoon. At first, we wish
to add a built-in form of proof search to assist in using the solve command, perhaps replacing
it entirely. In the long term, we hope to apply insights gained from work on Cocon [26] to enable
users to define custom tactics together with correctness guarantees about them.
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& Kathrin Stark (2019): POPLMark Reloaded: Mechanizing Proofs by Logical Relations. J.
Funct. Program. 29, p. e19, doi:10.1017/S0956796819000170. Available at https://doi.org/10.1017/
S0956796819000170.
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