
Submitted to:
LFMTP 2020

c© P. Papapanagiotou & J. Fleuriot
This work is licensed under the
Creative Commons Attribution License.

Object-level reasoning with logics encoded in HOL Light

Petros Papapanagiotou
School of Informatics, University of Edinburgh

ppapapan@inf.ed.ac.uk

Jacques Fleuriot
School of Informatics, University of Edinburgh

jdf@inf.ed.ac.uk

Higher order logic (HOL) proof assistants, such as HOL Light [4], provide the means to encode other
logics and prove conjectures specified within them (object-level reasoning). This can help understand
how the objects of an encoded logic behave or even develop practical applications using that logic.

In practice, performing proofs within an encoding of a custom logic in HOL typically requires the
development of specialised tools and tactics for fine-grained structural manipulation of the encoded for-
mulae, customised management of the inference rules for backward and forward chaining, etc. Users
often need to develop such tools in an ad-hoc way in order to reason specifically about the logic they
are interested in, and this drastically increases the effort and time required to obtain a useful encoding.
Moreover, such tools may not scale across other logics, leading to a replication of effort.

We present a generic framework and toolset for object-level reasoning with custom logics encoded
in a sequent calculus style in HOL Light. It aims to facilitate the exploration of different logical theories
by minimizing the effort required between encoding the logic and obtaining an object-level proof.

There are strong similarities between our system and Isabelle [10, 11], which exposes an intuitionistic
meta-logic (Isabelle/Pure) that enables the embedding of different theories, and the development of proof
tactics and procedures for both interactive and automated theorem proving within those theories.

A key feature which sets our framework apart is the handling of type theoretical correspondences
between embedded logics and processes. These are inspired by the propositions-as-types paradigm (or
Curry-Howard correspondence) [6] to enable the construction of executable terms in some calculus via
proof, which we will refer to as computational construction. Terms are attached to each logical formula,
so that the formula represents the type of the term. The application of inference rules on such annotated
terms results in the construction of a process with some guaranteed correctness properties.

Our work is motivated by the variety of correspondences between linear logic [3] and distributed pro-
cesses, including proofs-as-processes [1], session types [2], dependent session types [12], propositions-
as-sessions [13], and πULL [5]. Our framework can work jointly with the meta-theoretic efforts in these
strands of work, providing a formal setting to produce object-level proofs and generate process instances.

We present an example from the well-known propositions-as-types paradigm. Note that a similar
example from one of the linear logic correspondences would be just as easily managed by our system (see
below), but would require setting up enough context, which is not possible here due to space restrictions.
We consider a subset of propositional logic involving only conjunction (×) and implication (→) and its
correspondence to a simply typed λ -calculus (inspired by Wadler’s discussion of the same topic [14]).
The proof of commutativity of × in this setting is as follows:

f st(Var x) :X ` f st(Var x) :X Ax

Var x :X×Y ` f st(Var x) :X
L1×

snd(Var x) :Y `snd(Var x) :Y Ax

Var x :X×Y `snd(Var x) :Y
L2×

Var x :X×Y, Var x :X×Y `(snd(Var x), f st(Var x)) :Y ×X
R×

Var x :X×Y `(snd(Var x), f st(Var x)) :Y ×X
C

`λx.(snd(Var x), f st(Var x)) :X×Y → Y ×X
R→

(1)
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This can be viewed as a type checking proof that the type of λx.(snd(Var x), f st(Var x)) is X×Y →
Y×X . Alternatively, assuming an original goal of the form ∃ f . ` f :X×Y→Y×X , this can be viewed as
a construction proof of a term f with type X×Y →Y ×X , resulting in f = λx.(snd(Var x), f st(Var x)).
Ignoring the λ -calculus annotations this can also be viewed as a simple logical proof.

Assuming an encoding of sequents as a function of logical consequence ( `) over a multiset of for-
mulae, performing even such a simple object-level proof with an embedded logic in HOL Light requires
tedious manipulation of the multisets in the inference rules and proof goals using rewriting or appropri-
ate instantiations. In addition, the construction of the computational component f also requires careful,
gradual, delayed instantiation of metavariables that the user would normally keep track of manually. Our
framework automates the involved structural and metavariable reasoning, facilitating the mechanization
of proof (1) with direct rule applications as shown in the following script:

Step Tactic Goal(s)
∅ `X×Y → Y ×X

1 ruleseq (R→) {X×Y} `Y ×X
2 ruleseq (C) {X×Y}]{X×Y} `Y ×X
3 ruleseq (R×) {X×Y} `Y {X×Y} `X
4 ruleseq (L2×) {Y} `Y {X×Y} `X
5 ruleseq (Ax) {X×Y} `X
6 ruleseq (L1×) {X} `X
7 ruleseq (Ax)

The same script can perform this proof, whether it is seen as a type checking, construction, or a
purely logical proof. This allows users to easily construct computational terms and test and compare
different logics and the behaviour of their correspondences (or even multiple correspondences of the
same logic at the same time), merely by manipulating the encoding of the inference rules rather than
having to rebuild or repurpose the implemented tools and proofs each time. All of this is made possible
through the following key features:

1. Adapted procedural tactics for forward and backward reasoning inspired by Isabelle and extended
from the Isabelle Light library [7].

2. Smart matching of sequents using multiset matching and metavariable unification.
3. Augmented proof system to allow extensions of the proof state with metadata, for instance about

metavariables.
4. Systematic management of metavariables in the extended proof state for each subgoal.
5. Special functions that facilitate the extraction of constructed components.
The implemented generic tactics integrate fully within the (extended) tactic system of HOL Light,

and can be used interactively, in packaged proofs, or programmatically in proof automation. The full
implementation can be found online1. It includes the example of this paper, as well as 2 example embed-
dings of linear logic: Intuitionistic Linear Logic with no correspondence and the propositions-as-sessions
paradigm, i.e. a correspondence of Classical Linear Logic to CP [13].

We believe our framework can be a powerful tool for research in type theory and process calculi,
in addition to its already successful application to process specification and composition within health-
care [8, 9]. We are planning to discuss other aspects of this work, such as key challenges and solutions,
technical details, the use of HOL Light, and a comparison with other systems in a forthcoming publica-
tion.

1https://github.com/PetrosPapapa/hol-light-embed and hol-light-tools

https://github.com/PetrosPapapa/hol-light-embed
https://github.com/PetrosPapapa/hol-light-tools
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