
Towards Higher-Order Abstract Syntax in Cedille
Work in Progress

Aaron Stump
Computer Science

The University of Iowa
Iowa City, Iowa

LFMTP 2019

1 / 20

HOAS, the long road

. From higher-order constructs for quantification [Church 1940]

. To second-order rewrite rules [Huet and Lang 1978],

. To identification of HOAS [Pfenning and Elliot 1988]

. Edinburgh LF [Harper, Honsell, Plotkin 1993]

. Systems like
I Twelf, λProlog, Beluga/Cocon, Abella, Dedukti
I Definitional approaches (Hybrid, Nominal Isabelle)

. Benchmarks like POPLmark, ORBI [Felty et al. 2015]

It would be so great to have HOAS in a proof assistant!

For this, we seek HOAS with an induction principle

2 / 20

A beautiful wish

Isn’t there hope of HOAS in a pure dependent type theory?

After all, we can Church encode lambda terms (in λ2):

Trm := ∀X : ?. ((X → X) → X) → (X → X → X) → X

E.g., represent (object-language) λx . x x as

λl . λa. l (λx . (a x x))

Similarly to Church-encoding 2 as

λs. λz. s (s z)

3 / 20

A beautiful wish

Isn’t there hope of HOAS in a pure dependent type theory?

After all, we can Church encode lambda terms (in λ2):

Trm := ∀X : ?. ((X → X) → X) → (X → X → X) → X

E.g., represent (object-language) λx . x x as

λl . λa. l (λx . (a x x))

Similarly to Church-encoding 2 as

λs. λz. s (s z)

3 / 20

A beautiful wish

Isn’t there hope of HOAS in a pure dependent type theory?

After all, we can Church encode lambda terms (in λ2):

Trm := ∀X : ?. ((X → X) → X) → (X → X → X) → X

E.g., represent (object-language) λx . x x as

λl . λa. l (λx . (a x x))

Similarly to Church-encoding 2 as

λs. λz. s (s z)

3 / 20

The problem: constructors

For a polynomial datatype, like

Nat := ∀X : ?. (X → X) → X → X

constructors are easily defined:

Zero : Nat := λs. λz. z
Zero : Nat → Nat := λn. λs. λz. s (n s z)

Not so for Trm:

App : Trm → Trm → Trm := λt . λt ′. λl . λa. a (t l a) (t ′ l a)
Lam : (Trm → Trm) → Trm := ?

4 / 20

The problem: constructors

For a polynomial datatype, like

Nat := ∀X : ?. (X → X) → X → X

constructors are easily defined:

Zero : Nat := λs. λz. z
Zero : Nat → Nat := λn. λs. λz. s (n s z)

Not so for Trm:

App : Trm → Trm → Trm := λt . λt ′. λl . λa. a (t l a) (t ′ l a)
Lam : (Trm → Trm) → Trm := ?

4 / 20

Constructors?

Washburn and Weirich [2008] give an encoding, maybe a
constructor?

Trma : ?→ ? := λX : ?. ((X → X)→ X)→ (X → X → X)→ X

lam : ∀X : ?.(Trma X → Trma X)→ Trma X := . . .

5 / 20

Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,

define category with algebras (A,m) as objects:

F A A
m

F A’ A’
m’

hF h

and algebra homomorphisms h as morphisms.

6 / 20

Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,

define category with algebras (A,m) as objects:

F A A
m

F A’ A’
m’

hF h

and algebra homomorphisms h as morphisms.

6 / 20

Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,

define category with algebras (A,m) as objects:

F A A
m

F A’ A’
m’

hF h

and algebra homomorphisms h as morphisms.

6 / 20

Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,

define category with algebras (A,m) as objects:

F A A
m

F A’ A’
m’

h

F h

and algebra homomorphisms h as morphisms.

6 / 20

Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,

define category with algebras (A,m) as objects:

F A A
m

F A’ A’
m’

hF h

and algebra homomorphisms h as morphisms.

6 / 20

Initial algebras
An initial object (D, in) in the category of algebras

F D D
in

F A A
m

(|h|)F (|h|)

So we need in of type F D → D

For Trm, with F X = X → X (eliding application), need

So the Washburn-Weirich definition will not work...
... but their idea of using polymorphism can

7 / 20

Initial algebras
An initial object (D, in) in the category of algebras

F D D
in

F A A
m

(|h|)F (|h|)

So we need in of type F D → D

For Trm, with F X = X → X (eliding application), need

in : F Trm → Trm

So the Washburn-Weirich definition will not work...
... but their idea of using polymorphism can

7 / 20

Initial algebras
An initial object (D, in) in the category of algebras

F D D
in

F A A
m

(|h|)F (|h|)

So we need in of type F D → D

For Trm, with F X = X → X (eliding application), need

in : (Trm → Trm) → Trm

So the Washburn-Weirich definition will not work...
... but their idea of using polymorphism can

7 / 20

Initial algebras
An initial object (D, in) in the category of algebras

F D D
in

F A A
m

(|h|)F (|h|)

So we need in of type F D → D

For Trm, with F X = X → X (eliding application), need

in : (Trm → Trm) → Trm

So the Washburn-Weirich definition will not work...

... but their idea of using polymorphism can

7 / 20

Initial algebras
An initial object (D, in) in the category of algebras

F D D
in

F A A
m

(|h|)F (|h|)

So we need in of type F D → D

For Trm, with F X = X → X (eliding application), need

in : (Trm → Trm) → Trm

So the Washburn-Weirich definition will not work...
... but their idea of using polymorphism can

7 / 20

Changing the notion of algebra

We saw so far:

Alg := λX : ?.(X → X) → X

Trm := ∀X : ?. Alg X → X

Let us try to find an alternative definition of Alg

A useful tool: positive-recursive types; e.g. Scott-encoded nats:

SNat = ∀X : ?.(SNat → X) → X → X

8 / 20

Changing the notion of algebra

We saw so far:

Alg := λX : ?.(X → X) → X

Trm := ∀X : ?. Alg X → X

Let us try to find an alternative definition of Alg

A useful tool: positive-recursive types; e.g. Scott-encoded nats:

SNat = ∀X : ?.(SNat → X) → X → X

8 / 20

Adjoining indeterminates

Drawing inspiration from [Selinger 2002],

think of λ as introducing a new constructor, for the bound var.

Trmga := λAlg : ?→ ?. λY : ?. (Alg Y → Y) → Y

Alg = λX : ?. (∀Y :?.Y → Trmga Alg Y) → X

An algebra takes in a subterm for the body,
which may use an addition input of abstracted type Y

But: definition of Alg is negative-recursive!

We will fix this shortly...

9 / 20

Adjoining indeterminates

Drawing inspiration from [Selinger 2002],

think of λ as introducing a new constructor, for the bound var.

Trmga := λAlg : ?→ ?. λY : ?. (Alg Y → Y) → Y

Alg = λX : ?. (∀Y :?.Y → Trmga Alg Y) → X

An algebra takes in a subterm for the body,
which may use an addition input of abstracted type Y

But: definition of Alg is negative-recursive!

We will fix this shortly...

9 / 20

Adjoining indeterminates

Drawing inspiration from [Selinger 2002],

think of λ as introducing a new constructor, for the bound var.

Trmga := λAlg : ?→ ?. λY : ?. (Alg Y → Y) → Y

Alg = λX : ?. (∀Y :?.Y → Trmga Alg Y) → X

An algebra takes in a subterm for the body,
which may use an addition input of abstracted type Y

But: definition of Alg is negative-recursive!

We will fix this shortly...

9 / 20

Problem: building up data incrementally

With what we have so far:

The bound variable of a λ-abstraction is over a new type Y

Nested abstractions like λx . λy . x cannot be built incrementally

. Body of λy . x must be over second abstracted type

Going under a λ is like entering a new world...

But one reachable from the current one

10 / 20

Problem: building up data incrementally

With what we have so far:

The bound variable of a λ-abstraction is over a new type Y

Nested abstractions like λx . λy . x cannot be built incrementally

. Body of λy . x must be over second abstracted type

Going under a λ is like entering a new world...

But one reachable from the current one

10 / 20

Kripke function spaces

We need to relate old and new worlds

The new (Y) must be reachable from the old (X): X → Y

Trmga := λAlg :?→ ?. λX :?.Alg X → X

Alg = (∀Y :?. (X → Y) → Y → Trmga Alg Y) → X

Not the final encoding, because no iteration

. Like a Scott encoding

. Amazing recent result: recursion for Scott encoding!

. Parigot, communicated in [Lepigre, Raffalli 2017]

. We will not try that here...

11 / 20

Kripke function spaces

We need to relate old and new worlds

The new (Y) must be reachable from the old (X): X → Y

Trmga := λAlg :?→ ?. λX :?.Alg X → X

Alg = (∀Y :?. (X → Y) → Y → Trmga Alg Y) → X

Not the final encoding, because no iteration

. Like a Scott encoding

. Amazing recent result: recursion for Scott encoding!

. Parigot, communicated in [Lepigre, Raffalli 2017]

. We will not try that here...

11 / 20

Final definition of Alg

Want the algebra to accept a copy of itself, for recursion

And let us eliminate that negative-recursion!

Can use Mendler’s technique of abstracting negative occurrences:

Alg = ∀Alga :?→ ?. (∀Y :?. (X → Y) → Y → Trmga Alga Y)
(∀X : ?. Alg X → Alga X) →
Alga X →
X

It is legal to hide the type of an Alg

12 / 20

Proceed, in Haskell
All we need is recursive types + impredicative polymorphism

{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE RankNTypes #-}

type Trmga alg x = alg x -> x

newtype Alg x =
MkAlg
{ unfoldAlg ::

forall (alga :: * -> *) .
(forall (y :: *) . (x -> y) -> y -> Trmga alga y) ->
(forall (z :: *) . Alg z -> alga z) ->
alga x ->
x}

newtype Trm =
MkTrm { unfoldTrm :: forall (x :: *) . Alg x -> x}

13 / 20

Finally, a weakly initial algebra!

lamAlg :: Alg Trm
lamAlg = MkAlg (\ f embed talg ->

MkTrm (\ alg ->
unfoldAlg alg
(\ mx ->

f (\ t -> mx (unfoldTrm t alg)))
embed

(embed alg)))

In the body:

f :: forall (y :: *) . (x -> y) -> y -> Trmga alga y
embed :: forall (z :: *) . Alg z -> alga z
talg :: alga x

lamAlg switches the algebra from talg (itself) to alg

14 / 20

Example encoded term: λx . λy . x

place :: forall (x :: *) . x -> Trmga Alg x
place = \ x -> \ alg -> x

test :: Trm
test = MkTrm (lam (\ mo x ->

lam (\ mx y -> place (mx x))))

15 / 20

A size function

size :: Trm -> Int
size = \ t -> unfoldTrm t

(MkAlg (\ f embed alg -> 1 + f id 1 alg))

Can check with ghci:

*WeaklyInitialHoas> size test
3

16 / 20

Conversion to de Bruijn notation

data Dbtrm = Lam Dbtrm | Var Int deriving Show

toDebruijn :: Trm -> Int -> Dbtrm
toDebruijn t =
unfoldTrm t (MkAlg (\ f embed alg -> \ v ->

let v’ = v + 1 in
Lam (f id (\ n -> Var (n - v’)) alg v’)))

With ghci:

*WeaklyInitialHoas> toDebruijn test 0
Lam (Lam (Var 1))

17 / 20

Converting Trm to String

vars :: Int -> [String]
vars n = ("x" ++ show n) : vars (n + 1)

printTrmH :: Trm -> [String] -> String
printTrmH t =

unfoldTrm t (MkAlg (\ f embed alg vars ->
let x = head vars in

"\\ " ++ x ++ ". " ++
f id (\ vars -> x) alg (tail vars)))

printTrm :: Trm -> String
printTrm t = printTrmH t (vars 1)

With ghci:

*WeaklyInitialHoas> putStrLn $ printTrm test
\ x1. \ x2. x1

18 / 20

Back in Cedille...
. A notion of algebra homomorphism:

h (alg1 f alg1) ' alg2 (λ mx . f (λ a . mx (h a))) alg2

. Proven

foldTrm / ∀ X : ? . Alg · X → Trm → X =
Λ X . λ alg . λ t . t alg.

foldHom : ∀ X : ? . ∀ alg : Alg · X .
IsHomomorphism · Trm lamAlg · X alg (foldTrm alg) =

F D D
lamAlg

F A A
alg

(foldTrm alg)F (foldTrm alg)

19 / 20

Back in Cedille...
. A notion of algebra homomorphism:

h (alg1 f alg1) ' alg2 (λ mx . f (λ a . mx (h a))) alg2

. Proven

foldTrm / ∀ X : ? . Alg · X → Trm → X =
Λ X . λ alg . λ t . t alg.

foldHom : ∀ X : ? . ∀ alg : Alg · X .
IsHomomorphism · Trm lamAlg · X alg (foldTrm alg) =

F D D
lamAlg

F A A
alg

(foldTrm alg)F (foldTrm alg)

19 / 20

Conclusion
. Work in progress towards HOAS in Cedille
. Weakly initial algebra for HOAS
. Use parametric polymorphism, Kripke function spaces for

I Bound variables as indeterminates
I Incrementally constructed data

. Next step: induction via parametricity!

ç
Acknowledgments:

Ernesto Copello
NSF 1524519, DoD FA9550-16-1-0082

AMDG
20 / 20

