Towards Higher-Order Abstract Syntax in Cedille

Work in Progress

Aaron Stump
Computer Science
The University of lowa
lowa City, lowa

LFMTP 2019

1/20



HOAS, the long road

> From higher-order constructs for quantification [Church 1940]
> To second-order rewrite rules [Huet and Lang 1978],

> To identification of HOAS [Pfenning and Elliot 1988]

> Edinburgh LF [Harper, Honsell, Plotkin 1993]

> Systems like

» Twelf, AProlog, Beluga/Cocon, Abella, Dedukti
» Definitional approaches (Hybrid, Nominal Isabelle)

> Benchmarks like POPLmark, ORBI [Felty et al. 2015]

It would be so great to have HOAS in a proof assistant!

For this, we seek HOAS with an induction principle

2/20



A beautiful wish

Isn’t there hope of HOAS in a pure dependent type theory?

3/20



A beautiful wish

Isn’t there hope of HOAS in a pure dependent type theory?

After all, we can Church encode lambda terms (in \2):

Tm = 9VX : x (X—=X) =2 X) > X=>X—=>X)= X

3/20



A beautiful wish

Isn’t there hope of HOAS in a pure dependent type theory?

After all, we can Church encode lambda terms (in \2):

Tm = 9VX : x (X—=X) =2 X) > X=>X—=>X)= X

E.g., represent (object-language) Ax. x x as
M. da. | (Ax. (ax x))
Similarly to Church-encoding 2 as

AS.A\z.5(s2)

3/20



The problem: constructors

For a polynomial datatype, like
Nat = VX . (X=>X) > X—->X
constructors are easily defined:

Zero : Nat = AS.\Z.Zz
Zero : Nat— Nat An.As. \z.s(ns 2)

4/20



The problem: constructors

For a polynomial datatype, like
Nat = VX . (X=>X) > X—->X
constructors are easily defined:

Zero : Nat = AS.\Z.Zz
Zero : Nat— Nat := An.\s.\z.s(nsz)

Not so for Trm:

App : Trm— Trm— Trm = Xt M. M. da. a(tla)(t'/a)
Lam : (Trm— Trm) — Trm = 7

4/20



Constructors?

Washburn and Weirich [2008] give an encoding, maybe a
constructor?

Tma @ x—=* = X:x(X=X)=2X)=>X=>X=X)—=X

lam : VX:x(TrmaX — Trma X) — Trma X = ...

5/20



Sadly, no

For inductive encodings, foundation is initial algebras

6/20



Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,
define category with algebras (A,m) as objects:

FA A

FA

A!

6/20



Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,
define category with algebras (A,m) as objects:

FA A

FA A

and algebra homomorphisms h as morphisms.

6/20



Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,
define category with algebras (A,m) as objects:

FA

A

FA A

and algebra homomorphisms h as morphisms.

6/20



Sadly, no

For inductive encodings, foundation is initial algebras

Given an endofunctor F on category C,

define category with algebras (A,m) as objects:

FA A
Fh h
FA A

and algebra homomorphisms h as morphisms.

6/20



Initial algebras
An initial object (D, in) in the category of algebras

in
FD D
F (h) (h)
FA A

So we need inoftype F D — D

7/20



Initial algebras
An initial object (D, in) in the category of algebras

in
FD D
F (h) (h)
FA A

So we need inoftype F D — D

For Trm, with F X = X — X (eliding application), need

in: FTrm— Trm

7/20



Initial algebras
An initial object (D, in) in the category of algebras

in
FD D
F (h) (h)
FA A

So we need inoftype F D — D

For Trm, with F X = X — X (eliding application), need

in : (Trm — Trm) — Trm

7/20



Initial algebras
An initial object (D, in) in the category of algebras

in
FD D
F (h) (h)
FA A

So we need inoftype F D — D

For Trm, with F X = X — X (eliding application), need
in : (Trm — Trm) — Trm

So the Washburn-Weirich definition will not work...

7/20



Initial algebras
An initial object (D, in) in the category of algebras

in
FD D
F (h) (h)
FA A

So we need inoftype F D — D

For Trm, with F X = X — X (eliding application), need
in : (Trm — Trm) — Trm

So the Washburn-Weirich definition will not work...
... but their idea of using polymorphism can

7/20



Changing the notion of algebra

We saw so far:
Alg = XX x(X—=>X)=> X

Trm = VX Alg X — X

Let us try to find an alternative definition of Alg

8/20



Changing the notion of algebra

We saw so far:
Alg = XX x(X—=>X)=> X

Trm = VX Alg X — X

Let us try to find an alternative definition of Alg

A useful tool: positive-recursive types; e.g. Scott-encoded nats:

SNat=VX : x.(SNat— X) - X — X

8/20



Adjoining indeterminates

Drawing inspiration from [Selinger 2002],
think of A as introducing a new constructor, for the bound var.

Trmga == MNAlg:x > % AY :x. (AlgY = Y) =Y

9/20



Adjoining indeterminates

Drawing inspiration from [Selinger 2002],

think of A as introducing a new constructor, for the bound var.

Trmga == MNAlg:x > % AY :x. (AlgY = Y) =Y
Alg = XX :x VY« Y = TrmgaAlgY) — X

An algebra takes in a subterm for the body,
which may use an addition input of abstracted type Y

9/20



Adjoining indeterminates

Drawing inspiration from [Selinger 2002],

think of A as introducing a new constructor, for the bound var.
Trmga == MNAlg:x > % AY :x. (AlgY = Y) =Y

Alg = XX :x VY« Y = TrmgaAlgY) — X

An algebra takes in a subterm for the body,
which may use an addition input of abstracted type Y
But: definition of Alg is negative-recursive!

We will fix this shortly...

9/20



Problem: building up data incrementally

With what we have so far:
The bound variable of a A-abstraction is over a new type Y
Nested abstractions like Ax. Ay. x cannot be built incrementally
> Body of Ay. x must be over second abstracted type

Going under a X is like entering a new world...

10/20



Problem: building up data incrementally

With what we have so far:
The bound variable of a A-abstraction is over a new type Y
Nested abstractions like Ax. Ay. x cannot be built incrementally
> Body of Ay. x must be over second abstracted type

Going under a X is like entering a new world...

But one reachable from the current one

10/20



Kripke function spaces

We need to relate old and new worlds

The new (Y) must be reachable from the old (X): X — Y

Trmga = MNAlg:x — . A X:x. Alg X — X

Alg = (VY (X—=Y)=>Y—=TmgaAlgyY)— X

11/20



Kripke function spaces

We need to relate old and new worlds

The new (Y) must be reachable from the old (X): X — Y

Trmga = MNAlg:x — . A X:x. Alg X — X

Alg = (VY (X—=Y)=>Y—TmgaAlgY)— X

Not the final encoding, because no iteration

> Like a Scott encoding

> Amazing recent result: recursion for Scott encoding!
> Parigot, communicated in [Lepigre, Raffalli 2017]

> We will not try that here...

11/20



Final definition of Alg

Want the algebra to accept a copy of itself, for recursion
And let us eliminate that negative-recursion!

Can use Mendler’s technique of abstracting negative occurrences:

Alg = YAlgaix -+ (VY (X—=Y)— Y — TrmgaAlga Y)
(VX : % Alg X — Alga X) —
Alga X —
X

It is legal to hide the type of an Alg

12/20



Proceed, in Haskell

All we need is recursive types + impredicative polymorphism
{-# LANGUAGE KindSignatures #-}

{-# LANGUAGE ExplicitForAll #-}

{-# LANGUAGE RankNTypes #-}

type Trmga alg x = alg x —> x

newtype Alg x =

MkAlg
{ unfoldAlg ::
forall (alga :: * —> x)
(forall (y :: %) . (x —> vy) —> vy —> Trmga alga y) —>
(forall (z :: %) . Alg z —> alga z) —>
alga x —>
x}

newtype Trm =
MkTrm { unfoldTrm :: forall (x :: %) . Alg x —> x}

13/20



Finally, a weakly initial algebral

lamAlg :: Alg Trm
lamAlg = MkAlg (\ f embed talg —>
MkTrm (\ alg ->
unfoldAlg alg

(\ mx —>
f (\ t —> mx (unfoldTrm t alg)))

embed

(embed alg)))
In the body:
£ v forall (y :: %) . (x —>vy) —> vy —> Trmga alga y
embed @I forall (z :: %) . Alg z -> alga z
talg 1 alga x

lamAlg switches the algebra from talg (itself) to alg

14/20



Example encoded term: Ax. \y. x

place :: forall (x :: %) . x —> Trmga Alg x
place = \ x —> \ alg -> x

test :: Trm

test = MkTrm (lam (\ mo x —>
lam (\ mx y —-> place (mx x))))

15/20



A size function

size :: Trm -> Int
size = \ t -> unfoldTrm t
(MkAlg (\ f embed alg -> 1 + f id 1 alg))

Can check with ghci:

*WeaklyInitialHoas> size test
3

16/20



Conversion to de Bruijn notation

data Dbtrm = Lam Dbtrm | Var Int deriving Show

toDebruijn :: Trm -> Int -> Dbtrm
toDebruijn t =
unfoldTrm t (MkAlg (\ f embed alg -> \ v ->
let v/ = v + 1 in
Lam (f id (\ n -> Var (n - v’)) alg v')))

With ghci:

*WeaklyInitialHoas> toDebruijn test 0
Lam (Lam (Var 1))

17/20



Converting Trm to String

vars :: Int -> [String]
vars n = ("x" ++ show n) : vars (n + 1)
printTrmH :: Trm -> [String] -> String

printTrmH t =
unfoldTrm t (MkAlg (\ f embed alg vars ->
let x = head vars in
AL S S
f id (\ vars —-> x) alg (tail vars)))

printTrm :: Trm —-> String
printTrm t = printTrmH t (vars 1)

With ghci:

*WeaklyInitialHoas> putStrLn $ printTrm test
\ x1. \ x2. x1

18/20



Back in Cedille...

> A notion of algebra homomorphism:

h (algl f algl) ~ alg2 (Amx . £ (A a . mx (h a))) alg2

> Proven

foldTrm <« V X : % . Alg - X — Trm — X
AX . Xalg . At . t alg.

foldHom : V X : % . V alg : Alg - X .

IsHomomorphism - Trm lamAlg - X alg (foldTrm alg) =

19/20



Back in Cedille...

> A notion of algebra homomorphism:

h (algl f algl) ~ alg2 (Amx . £ (A a . mx (h a))) alg2

> Proven

foldTrm <« V X : % . Alg - X — Trm — X
AX . Xalg . At . t alg.

foldHom : V X : % . V alg : Alg - X .
IsHomomorphism - Trm lamAlg - X alg

(foldTrm alg) =

lamAlg

FD—

F (foldTrm alg) (foldTrm alg)

alg
FA—A

19/20



Conclusion

> Work in progress towards HOAS in Cedille

> Weakly initial algebra for HOAS
> Use parametric polymorphism, Kripke function spaces for

» Bound variables as indeterminates
» Incrementally constructed data

> Next step: induction via parametricity!
Acknowledgments:
Ernesto Copello

NSF 1524519, DoD FA9550-16-1-0082

AMDG

20/20



