GF + MMT = GLF

From Language to Semantics through LF

Michael Kohlhase Jan Frederik Schaefer

Friedrich-Alexander-Universitat Erlangen-Nirnberg

LFMTP
Vancouver, June 22, 2019

1/35

Natural Language Semantics

“Mary runs and John is happy.” run’(mary’) A happy’(john")

“Everyone loves Mary." Vx.love'(x, mary’)
“He loves her." IXn, Yr.love' (X, Yr)
“John isn't allowed to run." - < run’(john”)

2/35

Natural Language Semantics

Definition
NL semantics studies the meaning of NL utterances

How could we do this?
Look at a fragment of English and define a suitable logic [Mon70]

~ we could cheat a little:
“Mary runs. She is happy.” run’(mary’) A happy’(mary’)

~ describe the translation as well

3/35

Natural Language Semantics

M= (D, T) induces e C FLx FL
I@ ‘) E= Fc?I
7 formulae o C FLx FL
AnaIysisT Fne = '_C?I
NE induces s ene SNLXNL

Comp Ling

4/35

Natural Language Understanding (NLU) Systems

Semantics Semantic
Construction Analysis
(compositional) Logic (inferential) Logic
Expression Expression

parsing

5/35

The Grammatical Logical Framework (GLF)

parsing Semantics
s —_— i
NL Utterance Construction Logic

Expression

GF

(Grammatical Framework) wU

Transition trivial:
compatible logical frameworks

GF = grammar development framework
+ MMT = logic development framework

GLF = semantics development framework

6/35

The Example

“Everyone runs.” Vx.run’(x)

“Someone is happy.” Ix.happy’(x)

“John and Mary are happy.” happy’(john") A happy’(mary’)

Fragment of English Target logic: FOL

7/35

The Grammatical Framework (GF) [Ranl11]

® GF is a programming language for multilingual grammar
applications

® Abstract syntax: describes parse trees

* Concrete syntaxes: language-specific linearization rules

makeStmt
YARRN abstract syntax
john be_happy

N

“Johann ist

“John is happy” gliicklich’ concrete syntaxes

8/35

Describing the Fragment in GF — Abstract Syntax

abstract Gossip = {

cat
Actor; Action; Stmt;

fun
everyone : Actor;
someone : Actor;
makeStmt : Actor -> Action -> Stmt;
twoOf : Actor -> Actor -> Actor;

abstract GossipLex = Gossip ** {
fun 5
john, mary : Actor; makeStmt

run : Action; /// \\\

be_happy : Action; twoOf be_happy

} /N

john mary

makeStmt (twoOf john mary) be_happy

9/35

Describing the Fragment in GF — Concrete Syntax

concrete GossipEng of Gossip = {

lincat
Actor = Str; Action = Str; Stmt = Str;

lin
everyone = "everyone";
someone = "someone";
makeStmt actor action = actor ++ action;
twoOf a b = a ++ "and" ++ b;

concrete GossiplLexEng of GossipLex = GossipEng xx {

lin
john = "John";
mary = "Mary";
run = "runs";

be_happy = "is happy";

10/35

In [50]:

In [51]:

Concrete Syntax for English (first attempt)

concrete GossipEng® of Gossip = {

lincat
Actor = Str; Action = Str; Stmt = Str;
1lin
everyone = "everyone";
someone = "someone";
makeStmt actor action = actor ++ action;
and a b = a ++ "and" ++ b;

}

Abstract changed, previous concretes discarded.

concrete GossiplLexEng® of GossipLex = GossipEnge ** {

lin
john = "John";
mary = "Mary";
run = "runs";
be happy = "is happy";

}

Abstract changed, previous concretes discarded.

Let's try it out!

In [52]: . parse -lang=Eng@ -cat=Stmt "John runs"

makestmt john run

In [53]: . parse -lang=Eng@ -cat=Stmt "John and Mary are happy"

The parser failed at token 4: "are"

In [54]: . linearize makeStmt (and john mary) be happy

John and Mary is happy 1

35

Describing the Fragment in GF — Concrete Syntax

Problem

“John is happy” Vs “John and Mary are happy"

Solutions
® More sophisticated grammar rules

® Use the resource grammar library

12/35

Describing the Fragment in GF — Concrete

concrete GossipEng of Gossip = {

param
Plurality = Sg | P1l;

lincat
Actor = {s : Str; p : Plurality};
Action = Plurality => Str;
Stmt = Str;

lin
everyone = {s = "everyone"; p = Sg};
someone = {s = "someone"; p = Sg};

makeStmt actor action = actor.s ++ action ! actor.p;
twoOf a b = {s = a.s ++ "and" ++ b.s; p = Pl};

Let's try it out!

In [47]: - parse -lang=Engl -cat=stmt "John runs"

makeStmt john run

In [48]: - parse -lang=Engl -cat=stmt "John and Mary are happy"
makeStmt (and john mary) be_happy

In [49]: - parse -lang=eEngl -cat=Stmt "John and Mary is happy"

The parser failed at token 4: "is"

Syntax

13/35

Describing the Fragment in GF — Concrete Syntax

Resource Grammar Library: grammar rules for 36 languages

concrete GossipEng of Gossip = open SyntaxEng, DictEng in {
lincat

Actor = NP;
Action = VP;
Stmt = S;
lin
everyone = everyone_NP;
someone = someone_NP;
makeStmt actor action = mkS (mkCl actor action);

twoOf a b = mkNP and_Conj a b;

14/35

Where are we?

makeStmt
“John and Mary R N
are happy” 7OC< be_happy

parsing

GF
(Grammatical Framework)

Logic
Expression

MMT

15/35

MMT — “anything you can do we can do meta” [RK13]

® You may remember “Rapid Prototyping Formal Systems in
MMT: 5 Case Studies” [MR19]

® Meta meta theories/meta meta tool set
e Little theories

® Bring your own logic

® |ogic development environment

® Foundation-independent

16 /35

From GF to MMT

Abstract syntax (GF) Language theory (MMT)
abstract Gossip = { theory Gossip : ur:?LF =
cat
Actor; Actor : type |
Action; Action : type |
Stmt; Stmt : type |
fun
everyone : Actor; everyone : Actor |
someone : Actor; someone : Actor |
makeStmt : makeStmt
Actor->Action->Stmt; Actor — Action — Stmt]||
twoOf:Actor->Actor->Actor; twoOf:Actor — Actor — ActorH

makeStmt
twWoOf be_happy = makeStmt (twoOf john mary) be_happy

17/35

Where are we?

" makeStmt (twoOf john mary) be_happy
John and Mary _— l

are happy”
PRy makeStmt (twoOf Jjohn mary) be_happy

parsing Semantics
m » .
NL Utterance Construct |_0g|c
on

Expressi

GF

(Grammatical Framework) wlU

18/35

theory FOL :

prop
and
neg
or

ind
forall
exists

[x,

[p]

Target Logic and Domain Theory in MMT

theory DomainTheory : ?FOL =

mary
john
run

happy :

L

ur:?LF =

: type | # o
0> 0 —> o0 | # 1 A
0> o0 | # -1
: 0> 0 —>o0 | # 1 v
vyl = ((= x) A (=Y

: type | #
(L—>0) >0 | #V 1
(L—>0) =0 | # 31

= (VY [x] (= p %))
| # mary’ [
| # john’ [
- o | # run’ 1 [
- o | # happy’ 1 |

L
L
L

19/35

Where are we?

makeStmt (twoOf john mary) be-happy

“John and Mary _— l

" (happy’ john’)A (happy’ mary’)
are happy

makeStmt (twoOf john mary) be_happy

parsing @
[NL Utterance | —— Logic
Expression

GF
(Grammatical Framework)

MMT

20/35

Semantics Construction in MMT

Gossip

Actor, Action, Stmt

FANANANANNANANNANNNNANNAD
everyone, someone,

makeStmt, twoOf

|

GossipLex DomainTheory
Jjohn, mary, |~~~ john’, mary’,
run, be_happy run’, happy’

21/35

Naive Approach

view GossipSem : ?Gossip -> ?FOL =

Stmt =o |
Action =t — o |
Actor =
everyone = 2?2272 |
someone = ??? |
makeStmt = [a,@] ¢ a |
twoOf = 2272 |
[
view GossipLexSem : ?GossipLex -> ?DomainTheory =
include ?GossipSem ||
john = Jjohn’ |
mary = mary’ |
run = [x] run’ x |
be_happy = [x] happy’ x |

22/35

Type Raising [Mon74]

Problem

Actor =

everyone : Actor = ?

Solution

Actor = (¢t - o) — O

john = [¢] ¢ john’

everyone = [p] V [x] (¢ x) = [p] V ¢
Example

“everyone runs” w— ([¢] V [x] (p x)) run’

~g vV [x]

(run’

x)

23/35

Better Approach

view GossipSem : ?Gossip -> ?FOL =

Stmt =o |

Action =t — o |

Actor = (Lt >0) = o |

everyone = [@] V ¢ |

someone = [@] 3 ¢ |

makeStmt = [a,@] a ¢ |

twoOf = [al,a2] [@] (al @) A (a2 @) |
0
view GossipLexSem : ?GossipLex -> ?DomainTheory =

include ?GossipSem ||

john = [@] @ john’ |

mary = [@] @ mary’ |

run = [x] run’ x |

be_happy = [x] happy’ x |

24/35

Better Approach

view GossipSem : ?Gossip -> ?FOL =

Stmt =o |
Action =t — o |
Actor = (Lt >0) = o |

everyone = [@] V ¢ |

someone = [@] 3 ¢ |
makeStmt = [a,@] a @ |
twoOf = [al,a2] [@] (al @) A (a2 @) |

[

These views are described in NL semantics papers like [Mon74]:

Rules of conjunction and disjunction

T11. If ¢, € P and ¢, translate into ¢',y/’ respectively, then ¢ and y translates
into [¢ AY], ¢ or Y translates into [¢ vi].

T12. If y,0 € Pry and 7, § translate into }’, 8’ respectively, then y and J translates
into £[y'(x) A &'(x)],7 or J translates into &[y'(x) v &'(x)].

T13. Ifa,B € Py and o, f translate into o, 8’ respectively, then o or 8 translates into

Pl(P) v B'(P)].

24/35

Example

“John and Mary are happy”
| parse
makeStmt (twoOf john mary) be_happy
| semantics construction
(la,p] a ¢)
(([al,a2] [¢] (al @) A (a2 ¢)) ([e] ¢ john') ([¢] ¢ mary’))
([x] happy’ x)
| simplify
([al,a2,¢] (al @) A (a2 ¢)) ([pl ¢ Jjohn”) ([¢]l ¢ mary’) happy’
| simplify
([pl (¢ john”) A (¢ mary’)) happy’
| simplify

(happy’ john’) A (happy’ mary’)

25/35

Other Examples (from paper)

Adding Transitive Verbs (~ more type raising)
“John and Mary love everyone”

|

Vix:t] (love’ john’ x)A(love’ mary’ x)

26/35

Other Examples (from paper)

(Multi) Modal Logic
Modalities:
® deontic — something is obligatory ([q]) or permissible ((a))

® epistemic — someone believes something is true ([e j0nn’]) or
possible ((e jonn’)).

“John doesn’t believe that Mary has to run”

|

=[(e john")][d] (run’ mary’).

27/35

GLF Script

Please enter a sentence: John isn’t allowed to run

I got the following interpretations:

={d) (run’ john’)

Please enter a sentence: Mary believes that John doesn’t have to run
I got the following interpretations:

[(e mary’)]-[d] (run’ john’)

Please enter a sentence:

28/35

Conclusions

GLF = tool to implement NLU system
would have been great in the 90's to avoid pen-and-paperness

previous versions used for teaching NL semantics

work on a Jupyter kernel for GLF

generic tableau calculus for semantic analysis?

29/35

The Grammatical Logical Framework (GLF)

parsing Semantics
ey — i
NL Utterance Construction Logic

Expression

GF

(Grammatical Framework) el

Transition trivial:
compatible logical frameworks

GF = grammar development framework
+ MMT = logic development framework

GLF = semantics development framework

30/35

Bonus: Compositionality

Problem:
“John owns a book. It is red."
(Ix.own’(john', x) A book’(x)) A red(x)

Solution: Define more suitable logic (e.g. discourse representation
theory)

31/35

Bonus

“Mary works at a bank”
~» river bank or bank institute?

~ two parse trees:
® work_at mary bank_institute

® ywork_at mary bank_river

. Lexical Ambiguity

32/35

Bonus: Structural Ambiguity

“Mary saw the man with the binoculars”

S
T T
P/\ NP VP
/\
MLry saw/\ ery VP Adv
the/\CN saw NP with the binoculars
/\
man Adv the CN
T
with the binoculars an

33/35

References |

[§ R. Montague.
English as a Formal Language, chapter Linguaggi nella Societa
e nella Tecnica, B. Visentini et al eds, pages 189-224.
Edizioni di Communita, Milan, 1970.
Reprinted in [?], 188-221.

[d Richard Montague.
The proper treatment of quantification in ordinary English.
In R. Thomason, editor, Formal Philosophy. Selected Papers.
Yale University Press, New Haven, 1974.

[Dennis Miiller and Florian Rabe.
Rapid prototyping formal systems in mmt: Case studies.
2019.

34/35

References |l

[1 Aarne Ranta.
Grammatical Framework: Programming with Multilingual
Grammatrs.
CSLI Publications, Stanford, 2011.
ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

[@ Florian Rabe and Michael Kohlhase.
A scalable module system.
Information & Computation, 0(230):1-54, 2013.

35/35

