
GF + MMT = GLF
From Language to Semantics through LF

Michael Kohlhase Jan Frederik Schaefer

Friedrich-Alexander-Universität Erlangen-Nürnberg

LFMTP
Vancouver, June 22, 2019

1 / 35

Natural Language Semantics

“Mary runs and John is happy.” run′(mary′) ∧ happy′(john′)

“Everyone loves Mary.” ∀x .love′(x ,mary′)

“He loves her.” ∃XM,YF.love’(XM,YF)

“John isn’t allowed to run.” ¬◇ run′(john′)

2 / 35

Natural Language Semantics

Definition
NL semantics studies the meaning of NL utterances

How could we do this?
Look at a fragment of English and define a suitable logic [Mon70]

↝ we could cheat a little:

“Mary runs. She is happy.” run′(mary′) ∧ happy′(mary′)

↝ describe the translation as well

3 / 35

Natural Language Semantics

Comp Ling
NL

FL

M = ⟨D,I⟩

⊧NL ⊆ NL ×NL

⊢C ⊆ FL ×FL

⊧ ⊆ FL ×FL

Analysis

Iϕ

induces

induces

formulae
⊧ ≡ ⊢C?

⊧NL ≡ ⊢C?

4 / 35

Natural Language Understanding (NLU) Systems

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Semantic
Analysis

(inferential)

5 / 35

The Grammatical Logical Framework (GLF)

GF
(Grammatical Framework)

MMT

NL Utterance Syntax
Tree

parsing

Logic
Expression

Semantics

Construction

Transition trivial:
compatible logical frameworks

GF = grammar development framework

+ MMT = logic development framework

GLF = semantics development framework

6 / 35

The Example

“Everyone runs.” ∀x .run′(x)

“Someone is happy.” ∃x .happy′(x)

“John and Mary are happy.” happy′(john′) ∧ happy′(mary′)

Fragment of English Target logic: FOL

7 / 35

The Grammatical Framework (GF) [Ran11]

● GF is a programming language for multilingual grammar
applications

● Abstract syntax: describes parse trees

● Concrete syntaxes: language-specific linearization rules

john be_happy

makeStmt

abstract syntax

concrete syntaxes“John is happy” ⋯
“Johann ist
glücklich”

⋯ ⋯

8 / 35

Describing the Fragment in GF – Abstract Syntax

abstract Gossip = {
cat
Actor; Action; Stmt;

fun
everyone : Actor;
someone : Actor;
makeStmt : Actor -> Action -> Stmt;
twoOf : Actor -> Actor -> Actor;

}

abstract GossipLex = Gossip ** {
fun
john, mary : Actor;
run : Action;
be_happy : Action;

}

9 / 35

twoOf

john mary

be_happy

makeStmt

makeStmt (twoOf john mary) be_happy

Describing the Fragment in GF – Concrete Syntax

concrete GossipEng of Gossip = {
lincat
Actor = Str; Action = Str; Stmt = Str;

lin
everyone = "everyone";
someone = "someone";
makeStmt actor action = actor ++ action;
twoOf a b = a ++ "and" ++ b;

}

concrete GossipLexEng of GossipLex = GossipEng ** {
lin
john = "John";
mary = "Mary";
run = "runs";
be_happy = "is happy";

}

10 / 35

11 / 35

Describing the Fragment in GF – Concrete Syntax

Problem
“John is happy” vs “John and Mary are happy”

Solutions
● More sophisticated grammar rules

● Use the resource grammar library

12 / 35

Describing the Fragment in GF – Concrete Syntax

concrete GossipEng of Gossip = {
param
Plurality = Sg | Pl;

lincat
Actor = {s : Str; p : Plurality};
Action = Plurality => Str;
Stmt = Str;

lin
everyone = {s = "everyone"; p = Sg};
someone = {s = "someone"; p = Sg};
makeStmt actor action = actor.s ++ action ! actor.p;
twoOf a b = {s = a.s ++ "and" ++ b.s; p = Pl};

}

13 / 35

Describing the Fragment in GF – Concrete Syntax

Resource Grammar Library: grammar rules for 36 languages

concrete GossipEng of Gossip = open SyntaxEng, DictEng in {
lincat
Actor = NP;
Action = VP;
Stmt = S;

lin
everyone = everyone_NP;
someone = someone_NP;
makeStmt actor action = mkS (mkCl actor action);
twoOf a b = mkNP and_Conj a b;

}

14 / 35

Where are we?

“John and Mary
are happy”

↦ twoOf

john mary

be_happy

makeStmt

GF
(Grammatical Framework)

MMT

NL Utterance Syntax
Tree

parsing

Logic
Expression

Semantics

Construction

15 / 35

MMT – “anything you can do we can do meta” [RK13]

● You may remember “Rapid Prototyping Formal Systems in
MMT: 5 Case Studies” [MR19]

● Meta meta theories/meta meta tool set

● Little theories

● Bring your own logic

● Logic development environment

● Foundation-independent

16 / 35

From GF to MMT

Abstract syntax (GF)

abstract Gossip = {
cat
Actor;
Action;
Stmt;

fun
everyone : Actor;
someone : Actor;
makeStmt :

Actor->Action->Stmt;
twoOf:Actor->Actor->Actor;

}

Language theory (MMT)

theory Gossip : ur:?LF =

Actor : type ∥
Action : type ∥
Stmt : type ∥

everyone : Actor ∥
someone : Actor ∥
makeStmt :

Actor → Action → Stmt∥
twoOf:Actor → Actor → Actor∥

8

twoOf

john mary

be_happy

makeStmt

↦ makeStmt (twoOf john mary) be happy

17 / 35

Where are we?

makeStmt (twoOf john mary) be happy

makeStmt (twoOf john mary) be happy

“John and Mary
are happy”

GF
(Grammatical Framework)

MMT

NL Utterance Syntax
Tree

parsing

Logic
Expression

Semantics

Construction

18 / 35

Target Logic and Domain Theory in MMT

theory FOL : ur:?LF =
prop : type | # o ∥

and : o → o → o | # 1 ∧ 2 ∥

neg : o → o | # ¬ 1 ∥

or : o → o → o | # 1 ∨ 2 |
= [x,y] ¬ ((¬ x) ∧ (¬ y)) ∥

ind : type | # ι ∥

forall : (ι → o) → o | # ∀ 1 ∥

exists : (ι → o) → o | # ∃ 1 |
= [p] ¬ (∀ [x] (¬ p x)) ∥

8

theory DomainTheory : ?FOL =
mary : ι | # mary’ ∥

john : ι | # john’ ∥

run : ι → o | # run’ 1 ∥

happy : ι → o | # happy’ 1 ∥
8

19 / 35

Where are we?

makeStmt (twoOf john mary) be happy

makeStmt (twoOf john mary) be happy

“John and Mary
are happy”

(happy’ john’)∧(happy’ mary’)

GF
(Grammatical Framework)

MMT

NL Utterance Syntax
Tree

parsing

Logic
Expression

Semantics

Construction

20 / 35

Semantics Construction in MMT

Gossip
Actor ,Action,Stmt

everyone, someone,
makeStmt, twoOf

GossipLex
john,mary ,
run,be happy

FOL
o, ι

∧,¬,∨
∀,∃

DomainTheory
john′,mary ′,
run′,happy ′

21 / 35

Naive Approach

view GossipSem : ?Gossip -> ?FOL =
Stmt = o ∥
Action = ι → o ∥
Actor = ι ∥

everyone = ??? ∥
someone = ??? ∥
makeStmt = [a,ϕ] ϕ a ∥
twoOf = ??? ∥

8

view GossipLexSem : ?GossipLex -> ?DomainTheory =
include ?GossipSem ∥
john = john’ ∥
mary = mary’ ∥
run = [x] run’ x ∥
be_happy = [x] happy’ x ∥

8

22 / 35

Type Raising [Mon74]

Problem
Actor = ι

everyone : Actor = ?

Solution
Actor = (ι → o) → o

john = [ϕ] ϕ john’

everyone = [ϕ] ∀ [x] (ϕ x) = [ϕ] ∀ ϕ

Example

“everyone runs” ↦ ([ϕ] ∀ [x] (ϕ x)) run’ ↝β ∀ [x] (run’ x)

23 / 35

Better Approach

view GossipSem : ?Gossip -> ?FOL =
Stmt = o ∥
Action = ι → o ∥
Actor = (ι → o) → o ∥

everyone = [ϕ] ∀ ϕ ∥
someone = [ϕ] ∃ ϕ ∥
makeStmt = [a,ϕ] a ϕ ∥
twoOf = [a1,a2] [ϕ] (a1 ϕ) ∧ (a2 ϕ) ∥

8

view GossipLexSem : ?GossipLex -> ?DomainTheory =
include ?GossipSem ∥
john = [ϕ] ϕ john’ ∥
mary = [ϕ] ϕ mary’ ∥
run = [x] run’ x ∥
be_happy = [x] happy’ x ∥

8

24 / 35

Better Approach

view GossipSem : ?Gossip -> ?FOL =
Stmt = o ∥
Action = ι → o ∥
Actor = (ι → o) → o ∥

everyone = [ϕ] ∀ ϕ ∥
someone = [ϕ] ∃ ϕ ∥
makeStmt = [a,ϕ] a ϕ ∥
twoOf = [a1,a2] [ϕ] (a1 ϕ) ∧ (a2 ϕ) ∥

8

view GossipLexSem : ?GossipLex -> ?DomainTheory =
include ?GossipSem ∥
john = [ϕ] ϕ john’ ∥
mary = [ϕ] ϕ mary’ ∥
run = [x] run’ x ∥
be_happy = [x] happy’ x ∥

8

24 / 35

These views are described in NL semantics papers like [Mon74]:

Example

“John and Mary are happy”

↓ parse

makeStmt (twoOf john mary) be happy

↓ semantics construction

([a,ϕ] a ϕ)
(([a1,a2] [ϕ] (a1 ϕ) ∧ (a2 ϕ)) ([ϕ] ϕ john’) ([ϕ] ϕ mary’))
([x] happy’ x)

↓ simplify

([a1,a2,ϕ] (a1 ϕ) ∧ (a2 ϕ)) ([ϕ] ϕ john’) ([ϕ] ϕ mary’) happy’

↓ simplify

([ϕ] (ϕ john’) ∧ (ϕ mary’)) happy’

↓ simplify

(happy’ john’) ∧ (happy’ mary’)

25 / 35

Other Examples (from paper)

Adding Transitive Verbs (↝ more type raising)

“John and Mary love everyone”

↓

∀[x:ι](love’ john’ x)∧(love’ mary’ x)

26 / 35

Other Examples (from paper)

(Multi) Modal Logic

Modalities:

● deontic – something is obligatory (JdK) or permissible (⟪d⟫)

● epistemic – someone believes something is true (Je john’K) or
possible (⟪e john’⟫).

“John doesn’t believe that Mary has to run”

↓

¬J(e john’)KJdK(run’ mary’).

27 / 35

GLF Script

Please enter a sentence: John isn’t allowed to run
I got the following interpretations:
¬⟪d⟫(run’ john’)
Please enter a sentence: Mary believes that John doesn’t have to run
I got the following interpretations:
J(e mary’)K¬JdK(run’ john’)
Please enter a sentence:

28 / 35

Conclusions

● GLF = tool to implement NLU system

● would have been great in the 90’s to avoid pen-and-paperness

● previous versions used for teaching NL semantics

● work on a Jupyter kernel for GLF

● generic tableau calculus for semantic analysis?

29 / 35

The Grammatical Logical Framework (GLF)

GF
(Grammatical Framework)

MMT

NL Utterance Syntax
Tree

parsing

Logic
Expression

Semantics

Construction

Transition trivial:
compatible logical frameworks

GF = grammar development framework

+ MMT = logic development framework

GLF = semantics development framework

30 / 35

Bonus: Compositionality

Problem:
“John owns a book. It is red.”
(∃x .own’(john’, x) ∧ book’(x)) ∧ red(x)

Solution: Define more suitable logic (e.g. discourse representation
theory)

31 / 35

Bonus: Lexical Ambiguity

“Mary works at a bank”

↝ river bank or bank institute?

↝ two parse trees:

● work_at mary bank_institute

● work_at mary bank_river

32 / 35

Bonus: Structural Ambiguity

“Mary saw the man with the binoculars”

S

VP

NP

CN

Adv

with the binoculars

man

the

saw

NP

Mary

S

VP

Adv

with the binoculars

VP

NP

CN

man

the

saw

NP

Mary

33 / 35

References I

R. Montague.
English as a Formal Language, chapter Linguaggi nella Societa
e nella Tecnica, B. Visentini et al eds, pages 189–224.
Edizioni di Communita, Milan, 1970.
Reprinted in [?], 188–221.

Richard Montague.
The proper treatment of quantification in ordinary English.
In R. Thomason, editor, Formal Philosophy. Selected Papers.
Yale University Press, New Haven, 1974.

Dennis Müller and Florian Rabe.
Rapid prototyping formal systems in mmt: Case studies.
2019.

34 / 35

References II

Aarne Ranta.
Grammatical Framework: Programming with Multilingual
Grammars.
CSLI Publications, Stanford, 2011.
ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

Florian Rabe and Michael Kohlhase.
A scalable module system.
Information & Computation, 0(230):1–54, 2013.

35 / 35

