
1

Rapid Prototyping Formal Systems in MMT: 5
Case Studies

Dennis Müller and Florian Rabe

Computer Science, University Erlangen-Nürnberg, Germany
LRI, University Paris-Sud, France

June 2019

Motivation 2

Motivation

Motivation 3

Logical Frameworks

= meta-logic in which syntax and semantics of object logics are
defined Automath, LF, Isabelle

Advantages

I Universal concepts expressions, substitution, typing, equality, . . .

I Meta-reasoning consistency, logic translations, . . .

I Rapid prototyping type reconstruction, theorem proving, . . .

I Generic tools theorem prover, module system, IDE, . . .

Simplicity vs. expressivity
I Meta-logic must be simple to be scalable, trustworthy

I Object logic must be expressive to be practical

I Big challenge for frameworks

Motivation 4

Designing Logical Frameworks
Typical approach:

I choose a λ-calculus
I add other features

I logic programming (λ-Prolog)
I meta logic (Twelf, Abella)
I proof assistant for object logic (Isabelle)
I concurrency (CLF)
I reasoning about contexts (Beluga)
I rewriting (Dedukti)
I external side conditions (LLFP)
I coupling with proof-assistant support (Hybrid)
I user-defined unification hints (ELPI)
I . . .

Problems
I Divergence due to choice of other features

I Even hypothetical union not expressive enough for real-life logics
no way to define, e.g., HOL Light, Mizar, PVS

Motivation 5

Experimentation with Formal Systems

Customize the system fundamentals

I increasingly complex problem domains
e.g., mathematics, programming languages

I plain formalization introduces too many artifacts to be
human-readable

I therefore: allow users to define how to interpret human input
e.g., custom parsing, type reconstruction

Examples:
I unification hints (Coq, Matita)

I extra-logical declarations
I allow users to guide incomplete algorithms (e.g., unification)

I meta-programming (Idris, Lean)
I expose internal datatypes to user
I allow users to program extensions in the language itself

Motivation 6

MMT = Meta-Meta-Theory/Tool

Problem:

I logical frameworks not expressive for practical logics

I more system experimentation needed

I trend towards fine-grained user control

Foundation-independence: use logical frameworks without
committing to a specific one

Mathematics Logic Logical Fra-
meworks

Foundation-
Independence

MMT
logical frameworks

logic, programming language, . . .

domain knowledge

The UniFormal Library 7

The UniFormal Library

The UniFormal Library 8

Large Scale Example: The LATIN Atlas

I DFG project 2009-2012 (with DFKI Bremen and Jacobs Univ.)
I Highly modular network of little logic formalizations

I separate theory for each
I connective/quantifier
I type operator
I controversial axioms e.g., excluded middle, choice, . . .
I base type

I reference catalog of standardized logics
I documentation platform

I Written in MMT/LF

I 4 years, with ∼ 10 students, ∼ 1000 modules

The UniFormal Library 9

The LATIN Atlas of Logical Systems
The LATIN Atlas is huge: That’s me pointing at the theory for
first-order logic

The UniFormal Library 10

Logic Diagrams in LATIN
An example fragment of the LATIN logic diagram

I nodes: MMT/LF theories

I edges: MMT/LF theory morphisms

PL

ML SFOL DFOL
FOL

CL

DL

OWL
HOL

MizarZFCHOL Light

Base

¬ . . . ∧

PL

∧Mod

∧Syn

∧Pf

I each node is root for library of that logic

I each edge yields library translation functor
library integration very difficult though

The UniFormal Library 11

OAF: Integration of Proof Assistant Libraries
I DFG project, 2014–2020, 15 contributors
I Big, overlapping libraries joined in MMT as the uniform

representation language > 100 GB XML in total
Mizar, HOL systems, IMPS, Coq, PVS, Isabelle. . .

I enables archival, comparison, integration

LF

MMT

LF+X

LATIN logic library . . .HOL Light

HOL Light library Bool Arith
. . .

Mizar

Mizar library
XBoole XReal

. . .
Arith

. . .

The UniFormal Library 12

OpenDreamKit: Virtual Math Research Environments

I EU project, 2015-2019, 15 sites, 25 partners
http://opendreamkit.org/

I MMT as mediator system
I system-independent formalization of math > 200 theories

no proofs, no algorithms
I integration of math computation systems

SageMath, GAP, Singular: services interfaces defined in MMT
I . . . and math databases

LMFDB, OEIS: database schemas defined in MMT

Example: dynamic retrieval
I SageMath user needs 13th transitive group with conductor 5

I SageMath queries MMT

I MMT retrieves it from LMFDB, translates it to SageMath syntax

http://opendreamkit.org/

The UniFormal Library 13

MathHub
GitHub-like but for MMT projects https://gl.mathhub.info

I 251 Repositories

I 187 Users

I 28.5 GB in March, probably doubled by now

For example:

Language Library Modules Declarations

MMT Math-in-the-Middle 220 826
LF LATIN 529 2,824
PVS Prelude+NASA 974 24,084
Isabelle Distribution+AFP 9553 1,472,280
HOL Light Basic 189 22,830
Coq > 50 in total 1,979 167,797
Mizar MML 1,194 69,710
SageMath Distribution 1,399
GAP Library 9,050

https://gl.mathhub.info

MMT Overview 14

MMT Overview

MMT Overview 15

Basic Concepts
Design principle

I few orthogonal concepts
I uniform representations of diverse languages

sweet spot in the expressivity-simplicity trade off
Concepts

I theory = named set of declarations
I foundations, logics, type theories, classes, specifications, . . .

I theory morphism = compositional translation
I inclusions, translations, models, katamorphisms, . . .

I constant = named atomic declaration
I function symbols, theorems, rules, . . .
I may have type, definition, notation

I term = unnamed complex entity, formed from constants
I expressions, types, formulas, proofs, . . .

I typing `T s : t between terms relative to a theory
I well-formedness, truth, consequence . . .

MMT Overview 16

Example: Propositional Logic in the MMT IDE

MMT Overview 17

Small Scale Example (1)
Logical frameworks in MMT

theory LF {
t y p e
Pi # Π V1 . 2 name[: type][#notation]
arrow # 1 → 2
lambda # λ V1 . 2
a p p l y # 1 2

}

Logics in MMT/LF

theory L o g i c : LF {
prop : t y p e
ded : prop → t y p e # ` 1 judgments-as-types

}
theory FOL : LF {

i n c l ude L o g i c
term : t y p e higher-order abstract syntax
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

MMT Overview 18

Small Scale Example (2)

FOL from previous slide:

theory FOL : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

Proof-theoretical semantics of FOL

theory FOLPF : LF {
i n c l ude FOL

rules are constants
f o r a l l I n t r o : ΠF:term→prop .

(Πx:term .` (F x)) → ` ∀(λx:term . F x)
f o r a l l E l i m : ΠF:term→prop .

` ∀(λx:term . F x) → Πx:term .` (F x)
}

MMT Overview 19

Small Scale Example (3)

FOL from previous slide:

theory FOL : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : (term → prop) → prop # ∀ V1 . 2

}

Algebraic theories in MMT/LF/FOL:

theory Magma : FOL {
comp : term → term → term # 1 ◦ 2

}
theory SemiGroup : FOL { i n c l ude Magma , . . . }
theory CommutativeGroup : FOL { i n c l ude SemiGroup , . . . }
theory Ring : FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}

MMT Overview 20

Abstract Syntax of Terms

Key ideas

I no predefined constants

I single general syntax tree constructor c(Γ; ~E)

I c(Γ; ~E) binds variables and takes arguments
I non-binding operators: Γ empty e.g., apply(·; f , a) for (f a)

I typical binders: Γ and ~E have length 1
e.g., lambda(x :A; t) for λx :A.t

contexts Γ ::= (x [: E][= E])∗

terms E ::=
constants | c
variables | x
complex terms | c(Γ;E ∗)

Terms are relative to theory T that declares the constants c

MMT Overview 21

Concrete Syntax of Terms

I Theories may attach notation(s) to each constant declaration

I Notations of c introduce concrete syntax for c(Γ; ~E)

e.g., for type theory

concrete syntax constant declaration abstract syntax

E ::=
type type # type

Πx : E1.E2 Pi # Π V1 . 2 Pi(x :E1;E2)
E1 → E2 arrow # 1 → 2 arrow(·;E1,E2)
λx : E1.E2 lambda # λ V1 . 2 lambda(x :E1;E2)
E1 E2 apply # 1 2 apply(·;E1,E2)

MMT Overview 22

Judgments

I MMT terms subsume terms of specific languages

I Type systems singles out the well-typed terms

For any theory Σ:

` Σ T = {Σ} is a valid theory definition
`T Γ Γ is a valid context

Γ `T t : A t has type A
Γ `T E = E ′ E and E ′ are equal
Γ `T : A A is inhabitable

Two kinds of rules:

I MMT defines some global rules once and for all
foundation-independent rules

I declared in MMT theories, subject to scoping
foundation-specific rules

MMT Overview 23

Foundation-Independent Rules

I Lookup rules for atomic terms over a theory T = {Σ}

c : A in Σ

`T c : A

c = t in Σ

`T c = t

I Equivalence and congruence rules for equality

I Rules for well-formed theories/contexts

` ·
` Σ [`Σ : A] [`T t : A]

` Σ, c[: A][= t]

MMT Overview 24

Foundation-Specific Rules

I Declared in theories as constants

I Carry reference to self-contained Scala object implementing a
rule interface

∼ 10 rule interfaces, in particular one for each algorithm:

I simplification: Γ `T E =?

I equality checking: Γ `T E = E ′ ?

I type inference: Γ `T t :?

I type checking: Γ `T t : A ?

I proving: Γ `T ? : A experimental

E.g., λ-inference rule

I applicable to Γ `T t :? whenever t = λx : A.s

I recursively infers type of s, returns Π-type

I reports errors and trace messages

MMT Overview 25

MMT Tool
Mature implementation

I API for representation language foundation-independent
I Collection of reusable algorithms

no commitment to particular application
I Extensible wherever reasonable

storage backends, file formats, user interfaces, . . .
operators and rules, language features, checkers, . . .

Separation of concerns between

I Foundation developers e.g., language primitives, rules

I Service developers e.g., search, theorem prover

I Application developers e.g., IDE, proof assistant

Yields rapid prototyping for logic systems

But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

MMT Overview 25

MMT Tool
Mature implementation

I API for representation language foundation-independent
I Collection of reusable algorithms

no commitment to particular application
I Extensible wherever reasonable

storage backends, file formats, user interfaces, . . .
operators and rules, language features, checkers, . . .

Separation of concerns between

I Foundation developers e.g., language primitives, rules

I Service developers e.g., search, theorem prover

I Application developers e.g., IDE, proof assistant

Yields rapid prototyping for logic systems

But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

MMT Overview 26

Logical Results

I Module system
modularity transparent to foundation developer

I Concrete/abstract syntax
notation-based parsing/presentation

I Interpreted symbols, literals
external model/implementation reflected into Mmt

I Type reconstruction
foundation plugin supplies only core rules

I Simplification
rule-based, integrated with type reconstruction

I Theorem proving?

I Code generation? Computation?

MMT Overview 27

Knowledge Management Results

I Change management recheck only if affected

I Project management indexing, building

I Extensible export infrastructure
Scala, SVG graphs, LaTeX, HTML, . . .

I Search, querying substitution-tree and relational index

I Browser interactive web browser, 2D/3D theory graph viewer

I Editing IDE-like graphical interface, LaTeX integration

MMT Overview 28

Type Reconstruction

Algorithm

I MMT implements foundation-independent rules

I visible foundation-specific rules collected from current context

I algorithm delegates to foundation-specific rules as needed

General algorithm takes care of

I unknown meta-variables

I delaying constraints

I definition expansion

I module system

transparent to foundation-specific rules

Case Studies 29

Case Studies

Case Studies 30

Rewriting

Add rewriting to any language already defined in MMT
Inspiration: LF modulo (e.g., Dedukti)

I Key idea: annotate
I a binary judgment as a rewrite predicate
I axioms for that judgment as rewrite rules

I Implement MMT plugin that dynamically generates new
simplification rules for each annotated axioms

I implemented via Change Listener interface
I Termination of rewrite system remain user’s responsibility

I Needed work: a few 100 hundred loc for the rule generator

Case Studies 31

External Side Conditions

Monadic type operator for calling external side conditions
LLFP paper by Honsell, Liquori, Maksimovic, Scagnetto

I Special expressions that represent keys
I normal MMT expressions
I but not part of the type system

I New rules for keys that run external side condition
I Variables typed by keys indicate which locks can be opened

I declared wheneve traversing into the monad
I automatically ignored by all other typing rules

I Add new rules for lock types that look for keys in the context
I if found, monad can be inspected
I otherwise, discharge external side condition by calling rule for

key

I Needed work: ∼ 100 loc for 7 rules
One evening at Dagstuhl with Ivan

Case Studies 32

Linear Logic

Inspiration: resource semantics to represent linear logic in LF-like
structural framework MMT context lookup obeys structural rules

I Already done in LF
I Kripke style model, worlds represent available resources
I monoid of worlds to represent empty world, union
I additional laws represent structural rules

e.g., commutativity for exchange

I Problem in LF: requires explicit reasoning in the monoid
awkward, inadequate

I Solution: add new rules for equality reasoning

I Needed work: depends on desired reasoning strength, < 100
loc for simple version

Conclusion 33

Conclusion

Conclusion 34

Summary

I MMT: foundation-independent framework for declarative
languages

I representation language
I implementation

I Easy to instantiate with specific foundations
rapid prototyping logic systems

I Deep foundation-independent results
I logical: parsing, type reconstruction, module system, . . .
I knowledge management: search, browsers, IDE, . . .

I Serious contender for
I experimenting with new system ideas
I generic applications/services
I universal library
I system integration platform

MMT-Based Foundation-Independent Results 35

MMT-Based Foundation-Independent Results

MMT-Based Foundation-Independent Results 36

IDE

I Inspired by programming language IDEs
I Components

I jEdit text editor (in Java): graphical interface
I MMT API (in Scala)
I jEdit plugin to tie them together

only ∼ 1000 lines of glue code

I Features
I outline view
I error list
I display of inferred information
I type inference of subterms
I hyperlinks: jump to definition
I search interface
I context-sensitive auto-completion: show identifiers that

MMT-Based Foundation-Independent Results 37

IDE: Example View

MMT-Based Foundation-Independent Results 38

An Interactive Library Browser

I MMT content presented as HTML5+MathML pages

I Dynamic page updates via Ajax

I MMT used through HTTP interface with JavaScript wrapper
I Features

I interactive display e.g., inferred types, redundant brackets
I smart navigation via MMT ontology

can be synchronized with jEdit
I dynamic computation of content

e.g., definition lookup, type inference
I graph view: theory diagram as SVG

MMT-Based Foundation-Independent Results 39

Browser: Example View

MMT-Based Foundation-Independent Results 40

Browser Features: 2-dimensional Notations

MMT-Based Foundation-Independent Results 41

Browser Features: Proof Trees

MMT-Based Foundation-Independent Results 42

Browser Features: Type Inferece

MMT-Based Foundation-Independent Results 43

Browser Features: Parsing

MMT-Based Foundation-Independent Results 44

Example Service: Search

MMT-Based Foundation-Independent Results 45

Example Service: Theory Graph Viewer
Theory graphs with 1000s of nodes
→ special visualization tools needed recently even in 3D

demo at https://www.youtube.com/watch?v=Mx7HSWD5dwg

https://www.youtube.com/watch?v=Mx7HSWD5dwg

LATEX Integration
I upper part: LATEX source for the item on associativity
I lower part: pdf after compiling with LATEX-MMT
I enriched with type inference, cross references, tooltips

e.g., type argument M of equality symbol

	Motivation
	Logical Frameworks
	Designing Logical Frameworks
	Experimentation with Formal Systems
	MMT = Meta-Meta-Theory/Tool

	The UniFormal Library
	Large Scale Example: The LATIN Atlas
	The LATIN Atlas of Logical Systems
	Logic Diagrams in LATIN
	OAF: Integration of Proof Assistant Libraries
	OpenDreamKit: Virtual Math Research Environments
	MathHub

	MMT Overview
	Basic Concepts
	Example: Propositional Logic in the MMT IDE
	Small Scale Example (1)
	Small Scale Example (2)
	Small Scale Example (3)
	Abstract Syntax of Terms
	Concrete Syntax of Terms
	Judgments
	Foundation-Independent Rules
	Foundation-Specific Rules
	MMT Tool
	MMT Tool
	Logical Results
	Knowledge Management Results
	Type Reconstruction

	Case Studies
	Rewriting
	External Side Conditions
	Linear Logic

	Conclusion
	Summary

	MMT-Based Foundation-Independent Results
	IDE
	IDE: Example View
	An Interactive Library Browser
	Browser: Example View
	Browser Features: 2-dimensional Notations
	Browser Features: Proof Trees
	Browser Features: Type Inferece
	Browser Features: Parsing
	Example Service: Search
	Example Service: Theory Graph Viewer
	LaTeX Integration

