Rapid Prototyping Formal Systems in MMT: 5
Case Studies

Dennis Miiller and Florian Rabe

Computer Science, University Erlangen-Niirnberg, Germany
LRI, University Paris-Sud, France

June 2019

Motivation

Motivation

Motivation

Logical Frameworks

= meta-logic in which syntax and semantics of object logics are

defined Automath, LF, Isabelle
Advantages
> Universal concepts expressions, substitution, typing, equality, ...
> Meta-reasoning consistency, logic translations, ...
> Rapid prototyping type reconstruction, theorem proving, ...
» Generic tools theorem prover, module system, IDE, ...

Simplicity vs. expressivity
> Meta-logic must be simple to be scalable, trustworthy
> Object logic must be expressive to be practical

» Big challenge for frameworks

Motivation

Designing Logical Frameworks
Typical approach:

» choose a A-calculus

» add other features
logic programming (A-Prolog)
meta logic (Twelf, Abella)
proof assistant for object logic (Isabelle)
concurrency (CLF)
reasoning about contexts (Beluga)
rewriting (Dedukti)
external side conditions (LLFP)
coupling with proof-assistant support (Hybrid)
user-defined unification hints (ELPI)

vV VvV vV vV VY VY VY VvYY

Problems
» Divergence due to choice of other features

> Even hypothetical union not expressive enough for real-life logics
no way to define, e.g., HOL Light, Mizar, PVS

Motivation

Experimentation with Formal Systems

Customize the system fundamentals
» increasingly complex problem domains
e.g., mathematics, programming languages

» plain formalization introduces too many artifacts to be
human-readable

» therefore: allow users to define how to interpret human input
e.g., custom parsing, type reconstruction

Examples:
» unification hints (Coq, Matita)

» extra-logical declarations
» allow users to guide incomplete algorithms (e.g., unification)

» meta-programming (ldris, Lean)

> expose internal datatypes to user
> allow users to program extensions in the language itself

Motivation

MMT = Meta-Meta-Theory/Tool

Problem:
> logical frameworks not expressive for practical logics
> more system experimentation needed
» trend towards fine-grained user control

Foundation-independence: use logical frameworks without
committing to a specific one

Mathematics | Logic Logical Fra- | Foundation-
meworks Independence
\ MMT

] logical frameworks

] logic, programming language, ...

domain knowledge

‘I'he UniFormal Library

The UniFormal Library

‘I'he UniFormal Library
Large Scale Example: The LATIN Atlas

v

DFG project 2009-2012 (with DFKI Bremen and Jacobs Univ.)

Highly modular network of little logic formalizations
» separate theory for each
> connective/quantifier
> type operator
» controversial axioms e.g., excluded middle, choice, ...
> base type

v

» reference catalog of standardized logics
» documentation platform

Written in MMT/LF
> 4 years, with ~ 10 students, ~ 1000 modules

v

‘I'he UniFormal Library

The LATIN Atlas of Logical Systems

The LATIN Atlas is huge: That's me pointing at the theory for
first-order logic

——

I'he UniFormal Library

Logic Diagrams in LATIN

An example fragment of the LATIN logic diagram
» nodes: MMT/LF theories
» edges: MMT/LF theory morphisms

___—-—"-———_-—-:,//B;.;e\\\\ /,/7///\M(;d\
\ 1/ / \/// Il 577
L, T SFOLE oL | () e

DL

FOL < | AU

N AN [¢)] TPLLS S AP
OWL CL l))

HOL Light — ZFC — Mizar

» each node is root for library of that logic
» each edge vyields library translation functor
library integration very difficult though

I'he UniFormal Library

OAF: Integration of Proof Assistant Libraries

» DFG project, 2014-2020, 15 contributors
» Big, overlapping libraries joined in MMT as the uniform
representation language > 100 GB XML in total
Mizar, HOL systems, IMPS, Coq, PVS, Isabelle. ..
> enables archival, comparison, integration

MMT

/N

LF LF+X

LATIN logic library

HOL Light library
Mizar library

I'he UniFormal Library

OpenDreamKit: Virtual Math Research Environments

» EU project, 2015-2019, 15 sites, 25 partners
http://opendreamkit.org/
» MMT as mediator system

» system-independent formalization of math > 200 theories
no proofs, no algorithms
» integration of math computation systems
SageMath, GAP, Singular: services interfaces defined in MMT
» ...and math databases
LMFDB, OEIS: database schemas defined in MMT

Example: dynamic retrieval
> SageMath user needs 13th transitive group with conductor 5
» SageMath queries MMT
» MMT retrieves it from LMFDB, translates it to SageMath syntax

http://opendreamkit.org/

I'he UniFormal Library

MathHub
GitHub-like but for MMT projects https://gl.mathhub.info

» 251 Repositories

> 187 Users
» 28.5 GB in March, probably doubled by now
For example:

Language Library Modules Declarations
MMT Math-in-the-Middle 220 826
LF LATIN 529 2,824
PVS Prelude+NASA 974 24,084
Isabelle Distribution+AFP 9553 1,472,280
HOL Light Basic 189 22,830
Coq > 50 in total 1,979 167,797
Mizar MML 1,194 69,710
SageMath Distribution 1,399
GAP Library 9,050

https://gl.mathhub.info

MM T Overview

MMT Overview

MM T Overview

Basic Concepts
Design principle
» few orthogonal concepts
> uniform representations of diverse languages
sweet spot in the expressivity-simplicity trade off
Concepts
» theory = named set of declarations

» foundations, logics, type theories, classes, specifications, ...

v

theory morphism = compositional translation

> inclusions, translations, models, katamorphisms, ...

constant = named atomic declaration

v

> function symbols, theorems, rules, ...
> may have type, definition, notation

» term = unnamed complex entity, formed from constants

> expressions, types, formulas, proofs, ...

v

typing =1 s : t between terms relative to a theory

> well-formedness, truth, consequence ...

MMT Overview
Example: Propositional Logic in the MMT IDE

3 it - C\other\af\MMT\examples\source\logic\pl.mmt (modified)
Eile Edit Search Markers Folding View Utiities Macros Plugins Help
s/ 00 08 AR WEHD P81 % |«

© [| oonemsmmix| Srbtonsmmtx | ©plmmx | ©folmmix | © solmmix | holmmtx | pover_tpesmmix | © budmsix | © funcion_pesinm x BB

2 (Typed) [not ¢
ntaton (prsing) A

%:m’ix = i|namespace http://cds.ondoc.org/examles B
| 4 =[S g a =
e = §ss e_title Propositional Logic in MMTI
3 /7 @_author Florian Rabe
= L (ot i source] |
Rl 4
L oA ded s|Intuitionistic propositional logic with natural deduction rules and a few example proofs Nl
S arrow (Lambcar o
e e aems | | Mtheory PL ¢ ur:7LF =

: constant conra .
: 4 # itupes The Basic Concepts |
4 definton
notation (parsing) i sy
onsant e - /T the type of propositions |
e u prop : tupe
2 — i
constant or | # constructaors |
= type
notaton (parsing) 4l
conasit fnpl w /T The constructors provide the expressions of the tupes above. |
notaton (parsing) e
e 4 and :oprop — prop — prop | # 1 a2 prec 151
notation (parsing) ~af impl : prop — prop — prop #1=2prec 10l
constent equiv
stype 2
“:;(;m"(pamm . /T Equivalence is defined such that for [F:prop,G:prop] we define $F=G$ as $(F = G) A (G = F)s. |
theory PUNaIDed 2| equiv : prop — prop — prop #1%2prec 10|
& masge L 2 =yl (x*w oAty x)l
% consiank et An

% constant andi

MM T Overview

Small Scale Example (1)

Logical frameworks in MMT

theory LF {
type
Pi # N Vi 2 name[: type][#notation]
arrow #1 — 2
lambda # A V1 2
apply # 12
}
Logics in MMT /LF
theory Logic: LF {
prop type
ded : prop — type #F 1 judgments-as-types
}
theory FOL: LF {
include Logic
term type higher-order abstract syntax
forall (term — prop) — prop # V V1 . 2

MMT Overview
Small Scale Example (2)

FOL from previous slide:

theory FOL: LF {
include Logic
term © type
forall . (term — prop) — prop # V V1 . 2

}

Proof-theoretical semantics of FOL

theory FOLPF: LF {

include FOL
rules are constants
foralllntro : [F:term—prop.
(Nx:term .- (F x)) — F V(Ax:term.F x)
forallElim : MF:term—prop.

F V(Ax:term.F x) — TMx:term.F (F x)

MMT Overview
Small Scale Example (3)

FOL from previous slide:

theory FOL: LF {

include Logic

term © type

forall . (term — prop) — prop # V V1
}

Algebraic theories in MMT /LF/FOL:

theory Magma : FOL {
comp : term — term — term # 1 o 2
}

theory SemiGroup : FOL {include Magma, ...}
theory CommutativeGroup : FOL {include SemiGroup,
theory Ring : FOL {

additive: CommutativeGroup

multiplicative: Semigroup

MM T Overview
Abstract Syntax of Terms

Key ideas
» no predefined constants
» single general syntax tree constructor ¢(I; E)

» ¢(T; E) binds variables and takes arguments
» non-binding operators: I empty e.g., apply(:; f, a) for (f a)
» typical binders: I and E have length 1
e.g., lambda(x:A;t) for Ax:A.t

contexts r == (x[: E][=E]D*
terms E ==

constants | ¢

variables |

complex terms | ol EY)

Terms are relative to theory T that declares the constants ¢

MM T Overview

Concrete Syntax of Terms

» Theories may attach notation(s) to each constant declaration

» Notations of ¢ introduce concrete syntax for c(I; E)

e.g., for type theory

concrete syntax | constant declaration | abstract syntax

E .=
type type # type
Mx: E.E Pi #MN V1.2 |Pi(x:E; E)
Ei— E arrow #1—2 arrow(-; Eq, Ep)

M BB lambda # A V1. 2 | lambda(x: Eq; E2)
E B apply # 12 apply(-; E1, E2)

MMT Overview
Judgments

» MMT terms subsume terms of specific languages

» Type systems singles out the well-typed terms

For any theory %:

FX T = {X} is a valid theory definition
Fr " is a valid context

F-rt: A t has type A

7 E=E'| E and E’ are equal

- A A is inhabitable

Two kinds of rules:

» MMT defines some global rules once and for all
foundation-independent rules

» declared in MMT theories, subject to scoping
foundation-specific rules

MM T Overview

Foundation-Independent Rules

» Lookup rules for atomic terms over a theory T = {¥}

c:AinX c=tinXx
Frc:A Frc=t

» Equivalence and congruence rules for equality

» Rules for well-formed theories/contexts

FY [Fr ot Al [Tt A
F- X, [All= t]

MM T Overview

Foundation-Specific Rules

» Declared in theories as constants
» Carry reference to self-contained Scala object implementing a
rule interface
~ 10 rule interfaces, in particular one for each algorithm:
» simplification: T -1 E =7

v

equality checking: T+7 E=E'?

v

type inference: ' -1t :7
type checking: T+ t: A?

v

v

proving: T+ 7: A experimental
E.g., A-inference rule

> applicable to ' =7 t :7 whenever t = Ax : A.s

» recursively infers type of s, returns [N-type

> reports errors and trace messages

MM T Overview
MMT Tool

Mature implementation
> API for representation language foundation-independent
» Collection of reusable algorithms
no commitment to particular application
» Extensible wherever reasonable
storage backends, file formats, user interfaces, ...
operators and rules, language features, checkers, ...

Separation of concerns between

> Foundation developers e.g., language primitives, rules
> Service developers e.g., search, theorem prover
> Application developers e.g., IDE, proof assistant

Yields rapid prototyping for logic systems

MM T Overview
MMT Tool

Mature implementation
> API for representation language foundation-independent
» Collection of reusable algorithms
no commitment to particular application
» Extensible wherever reasonable
storage backends, file formats, user interfaces, ...
operators and rules, language features, checkers, ...

Separation of concerns between

> Foundation developers e.g., language primitives, rules
> Service developers e.g., search, theorem prover
> Application developers e.g., IDE, proof assistant

Yields rapid prototyping for logic systems

But how much can really be done foundation-independently?
MMT shows: not everything, but a lot

MM T Overview

Logical Results

» Module system
modularity transparent to foundation developer

v

Concrete/abstract syntax
notation-based parsing/presentation

v

Interpreted symbols, literals
external model/implementation reflected into MMT

» Type reconstruction
foundation plugin supplies only core rules

» Simplification

rule-based, integrated with type reconstruction
» Theorem proving?
» Code generation? Computation?

MM T Overview

Knowledge Management Results

» Change management recheck only if affected
» Project management indexing, building
» Extensible export infrastructure

Scala, SVG graphs, LaTeX, HTML, ...

Search, querying substitution-tree and relational index

v

» Browser interactive web browser, 2D /3D theory graph viewer

v

Editing IDE-like graphical interface, LaTeX integration

MM T Overview

Type Reconstruction

Algorithm
» MMT implements foundation-independent rules
» visible foundation-specific rules collected from current context
> algorithm delegates to foundation-specific rules as needed
General algorithm takes care of

» unknown meta-variables

v

delaying constraints

v

definition expansion

v

module system

transparent to foundation-specific rules

Case Stuaies

Case Studies

Case Stuaies

Rewriting

Add rewriting to any language already defined in MMT
Inspiration: LF modulo (e.g., Dedukti)

» Key idea: annotate

> a binary judgment as a rewrite predicate
» axioms for that judgment as rewrite rules

> Implement MMT plugin that dynamically generates new
simplification rules for each annotated axioms

» implemented via Change Listener interface
» Termination of rewrite system remain user’s responsibility

> Needed work: a few 100 hundred loc for the rule generator

Case Stuaies

External Side Conditions

Monadic type operator for calling external side conditions
LLFp paper by Honsell, Liquori, Maksimovic, Scagnetto

v

Special expressions that represent keys

» normal MMT expressions
> but not part of the type system

v

New rules for keys that run external side condition

v

Variables typed by keys indicate which locks can be opened

» declared wheneve traversing into the monad
» automatically ignored by all other typing rules

v

Add new rules for lock types that look for keys in the context
» if found, monad can be inspected
» otherwise, discharge external side condition by calling rule for
key
Needed work: ~ 100 loc for 7 rules
One evening at Dagstuhl with lvan

v

Case Stuaies

Linear Logic

Inspiration: resource semantics to represent linear logic in LF-like
structural framework MMT context lookup obeys structural rules

> Already done in LF
» Kripke style model, worlds represent available resources
» monoid of worlds to represent empty world, union
» additional laws represent structural rules
e.g., commutativity for exchange
» Problem in LF: requires explicit reasoning in the monoid
awkward, inadequate

» Solution: add new rules for equality reasoning

> Needed work: depends on desired reasoning strength, < 100
loc for simple version

Conclusion

Conclusion

Summary

v

v

v

Conclusion

MMT: foundation-independent framework for declarative
languages

>

>

representation language
implementation

Easy to instantiate with specific foundations

rapid prototyping logic systems

Deep foundation-independent results

>

>

logical: parsing, type reconstruction, module system, ...
knowledge management: search, browsers, IDE, ...

Serious contender for

>

>
>
>

experimenting with new system ideas
generic applications/services
universal library

system integration platform

VMIM I -Based Foundation-Independent Results

MMT-Based Foundation-Independent Results

VMIM I -Based Foundation-Independent Results

IDE

> Inspired by programming language IDEs
» Components

» jEdit text editor (in Java): graphical interface
» MMT API (in Scala)
» jEdit plugin to tie them together
only ~ 1000 lines of glue code

> Features
» outline view
> error list
» display of inferred information
> type inference of subterms
» hyperlinks: jump to definition
» search interface
» context-sensitive auto-completion: show identifiers that

VMIM I -Based Foundation-Independent Results
IDE: Example View

jEdit - C:\other\oaff\test\source\examples\pL.mmt !E
File Edit Search Markers Folding View Utilities Magos‘glug'\ns Help

A lemt LI < plmmt x|

% s -
- F““’“Iiﬁ ce http://cds.omdoc.org/exampless =]
o F y PL : http: Hcdg.omdoc.orgfurtheor‘les?i_if =
é E;ﬂ!e:fc:/ntherlnaﬁftestjsm 3 prop ¢ type
Tt . ded : prop = type
.’jﬂi s and L prop + prop +oprop
an .
impl « impl : prop * prop » prop
E“t‘;’pe . EBQOUiY : prop ¢ prop + prop
Edefinition a = [X,‘_A]} (x = ‘_«I) » ded
=-lambda e
B gl i
prop | 4] | »
By
~-prop
Erand 2 o ol ‘
=rimpl =
bt =81 i s, c.org/es 52PLIequiv?
argument must have dnmam type
ﬁ http://cds.omdoc.org/examples?PL; x:prop, y:prop |- ded : prop
~hitp-//cds.omdoc.org/examples?PLs x-pro, y-prop |- proptype = prop 4|
i _’I Ll d Consu\elErmr List MMT
8,30

(mmt,sidekick, UTF-8)S m r o WVEERELMD 4 error(s)19:50

VMIM I -Based Foundation-Independent Results

An Interactive Library Browser

» MMT content presented as HTML5+MathML pages
Dynamic page updates via Ajax
MMT used through HTTP interface with JavaScript wrapper
Features
> interactive display e.g., inferred types, redundant brackets
» smart navigation via MMT ontology
can be synchronized with jEdit
» dynamic computation of content

e.g., definition lookup, type inference
» graph view: theory diagram as SVG

v

v

v

VMIM I -Based Foundation-Independent Results

Browser: Example View

The MMT Web Server

Graph View Search Administration Help

[TRUTH show/hide type show/hide definition show/hide tags show/hide metadata

Style: html5 code.google.com / p / hollight / source / browse / trunk ? bool
2+ hollight 2| bool
RIS El' show/hide type show/hide onedim-notation ~ show/hide tags show/hide metadata
[+ bool.omdoc
[+ cale_int.omdoc [T_DEF show/hide type show/hide tags show/hide metadata
[+ calc_num.omdoc
4

calc_rat.omdoc
|- cart.omdoc @\ show/hide type show/hide onedim-notation show/hide tags show/hide metadata

d
$ AT LAND DEF showthide type show/hide tags show/hide metadata

[+ define.omdoc =

[#) ind_defs.omdoc = show/hide type _ show/hide onedim-notation _ show/hide tags _show/hide metadata
[Li zzzgzgzi-omdm ﬂMPiDEF show/hide type show/hide tags show/hide metadata

[+ iterate.omdoc ! showrhide type show/hide onedim-notation show/hide tags show/hide metadata

[+ lists.omdoc type {A:holtype }(A = bool) = bool

+ nums.omdoc

- pair.omdoc onedim-notation
' realomdoc ¥ x:_.a(precedence 0)

realax.omdoc

4
c
L
[
:
:

1
.

- realarith.omdoc . s =
[I‘ORALLiDEF show/hide type show/hide tags show/hide metadata }

etsomdoc type {A:holtype} F (1 A) = AP:A = bool.P= Ax:A.T

MM T-Based Founaation-Independent Results

Browser Features: 2-dimensional Notations

AL, POW DIV showhide type | show/hide definition

xft

type F Vx:real. Vy:real. Vi:num (%)” ==

-.‘..Fi

MM T-Based Founaation-Independent Results
Browser Features: Proof Trees

The MMT Web Server

Graph View Administration Help

Style: html5 cds.omdoc.org / courses / 2013 / ACS1 / exercise_10.mmt 2 Problem3
5 acs1_2013 2] theory Problem3 meta LI
1=} exercise_10.omdoc g
= = include : http://cds.omdoc.org/examples?FOLEQNatDed
& Problem2 o L 9
£ Problemd circ : term — term — term
example
” e term
latin
Imfdb R Dok Yaxeexx
+ mathscheme
- manl c t b Va¥ywey= youx
- openmath
- test L © b Vaeox=x
- tptp
ufheorics it R i
foral el
= = re=r
= SoAE reconstructed types 4
implicit arguments »
FVYresx=x
redundant brackets & * show
Enter an object over theory: [httpJ/icds omdoc. org/courses/201 5
- infer type hide
[x)sse simplify
ml L fold

" analyze [simplify

[xxee

[*iterm) term

VMIM I -Based Foundation-Independent Results

Browser Features: Type Inferece

ORALL DEF showthide type show/hide tags show/hide metadata
type {A:holtype} F (1A)= 2 P:A=>bool .P= kAT
— type

¢ R reconstructed types
implicit arguments
@X[STS_DEF show
\.’ show/hide type :
infer type (-
[OR_DEF show/hide . N
simplify

show/hide type fold
type bool J

(A = bool) = bool

TR T

redundant brackets ’

VMIM I -Based Foundation-Independent Results

Browser Features: Parsing

Enter an object over theory: Im\f\ighb’sDurcefbmwseftrunk'?arith 2 analyze v simplify

E

) BB = result: [x] Yy.3dz.y :\j_L_l__w_!_ e o<
Y-y ﬁ inferred type: { v:num bool

4

VMIM I -Based Foundation-Independent Results
Example Service: Search

[Enter Java regular expressions to filter based on the URI of a declaration
Namespace |

Theory |

Name |

[Enter an expression over theory |http:ﬁcode.google_comfp!hDI—\ightfsourcefbrowseftrunl
$x,y,p: x MOD p =y MOD p
Use $x.y,z:query to enter unification variables.

type of MOD_EQ

B ¥menum. Ya:num, YVp:inum . Yg:num.m = n+ ¢+ p— mMODp = n MOD p
type of MOD MULT_ADD
F Vmcnum. Ve:num, Vpinum . (m=a+ p) MOD g = pMOD &

MM T-Based Founaation-Independent Results

Example Service: Theory Graph Viewer

Theory graphs with 1000s of nodes
— special visualization tools needed recently even in 3D

demo at https://www.youtube.com/watch?v=Mx7HSWD5dwg

https://www.youtube.com/watch?v=Mx7HSWD5dwg

IATEX Integration

> upper part: IATEX source for the item on associativity
> lower part: pdf after compiling with ETEX-MMT
» enriched with type inference, cross references, tooltips
e.g., type argument M of equality symbol

\begin{mmtscopel}

For all \mmtvar{x}{in M},\mmtvar{y}{in M},\mmtvar{z}{in M}
it holds that !(x * y) * z = x * (y * z)!

\end{mmtscope}

A monoid is a tuple (M, o, e) where

— M is a sort, called the universe.
— o is a binary function on M.
— e is a distinguished element of M, the unit.

such that the following axioms hold:

— For all z,y,z it holds that (xoy)oz=prxo(yoz)
— For all z it holds that zece=,;x and eox=;x.

	Motivation
	Logical Frameworks
	Designing Logical Frameworks
	Experimentation with Formal Systems
	MMT = Meta-Meta-Theory/Tool

	The UniFormal Library
	Large Scale Example: The LATIN Atlas
	The LATIN Atlas of Logical Systems
	Logic Diagrams in LATIN
	OAF: Integration of Proof Assistant Libraries
	OpenDreamKit: Virtual Math Research Environments
	MathHub

	MMT Overview
	Basic Concepts
	Example: Propositional Logic in the MMT IDE
	Small Scale Example (1)
	Small Scale Example (2)
	Small Scale Example (3)
	Abstract Syntax of Terms
	Concrete Syntax of Terms
	Judgments
	Foundation-Independent Rules
	Foundation-Specific Rules
	MMT Tool
	MMT Tool
	Logical Results
	Knowledge Management Results
	Type Reconstruction

	Case Studies
	Rewriting
	External Side Conditions
	Linear Logic

	Conclusion
	Summary

	MMT-Based Foundation-Independent Results
	IDE
	IDE: Example View
	An Interactive Library Browser
	Browser: Example View
	Browser Features: 2-dimensional Notations
	Browser Features: Proof Trees
	Browser Features: Type Inferece
	Browser Features: Parsing
	Example Service: Search
	Example Service: Theory Graph Viewer
	LaTeX Integration

