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Correct proofs are tricky to write.

On paper:

• Challenging to keep track of all the details

• Easy to skip over details

• Difficult to understand interaction between different features

• Difficulties increase with size

In a proof assistant:

• A lot of overhead in building basic infrastructure

• May get lost in the technical, low-level details

• Time consuming

• Experience, experience, experience
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Mechanizing Normalization for STLC

“To those that doubted de Bruijn, I wished

to prove them wrong, or discover why they

were right. Now, after some years and

many hundred hours of labor, I can say

with some authority: they were right. De

Bruijn indices are foolishly difficult for this

kind of proof. [. . .] The full proof runs

to 3500 lines, although that relies on a

further library of 1900 lines of basic facts

about lists and sets. [. . .] the cost of de

Bruijn is partly reflected in the painful

1600 lines that are used to prove facts

about “shifting” and “substitution”.”

Ezra Cooper (PhD Student)

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq 3
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Abstraction, Abstraction, Abstraction

“The motivation behind the work in very-high-level languages is

to ease the programming task by providing the programmer

with a language containing primitives or abstractions suitable to

his problem area. The programmer is then able to spend his

effort in the right place; he concentrates on solving his problem,

and the resulting program will be more reliable as a result.

Clearly, this is a worthwhile goal.” B. Liskov [1974]
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Abstraction, Abstraction, Abstraction

“The motivation behind the work in very-high-level languages is

to ease the programming task by providing the programmer

with a language containing primitives or abstractions suitable to

his problem area. The programmer is then able to spend his

effort in the right place; he concentrates on solving his problem,

and the resulting program will be more reliable as a result.

Clearly, this is a worthwhile goal.” B. Liskov [1974]

Goal:

A dependent type theory (similar to Coq or Agda) that provides

the right abstractions for compactly and elegantly defining logics

and proofs.
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“To know your future you must

know your past.” – G. Santayana



Back in the 80s...

1987 • R. Harper, F. Honsell, G. Plotkin: A Framework for

Defining Logics, LICS’87

1988 • F. Pfenning and C. Elliott: Higher-Order Abstract

Syntax, PLDI’88

• LF = Dependently Typed Lambda Calculus (λΠ) serves as

a Meta-Language for representing formal systems

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF
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Representing Types and Terms in LF – In a Nutshell

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

On Paper (Object Language) In LF (Meta Language)

lam x :nat.x lam nat λx.x

lam x :nat. (lam x :nat⇒nat.x) lam nat λx.(lam (arr nat nat) λx.x)

lam x :nat. (lam f :nat⇒nat.app f x) lam nat λx.(lam (arr nat nat) λf.app f x)

Higher-order Abstract Syntax (HOAS):

• Uniformly model bindings with (intensional) functions in LF

• Inherit α-renaming and single substitutions

Model
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Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b
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Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b

LF = Dependently Typed Lambda Calculus λ
Π

• LF functions only encode variable scope

no recursion, no pattern matching, etc.

• HOAS trees = Syntax trees with binders

• Benefit: α-renaming and substitution principles

• Scales: Model derivation trees

- Hypothetical derivations as LF functions

- Parametric derivations as LF functions

7



Sounds cool. . . can I do this in

OCaml or Agda?



An Attempt in OCaml

and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body
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OK. . . so, how do we write recursive

programs over with HOAS trees?

We clearly want pattern matching, since

a HOAS tree is a data structure.



An Attempt to Compute the Size of a Term

size (lam λx.lam λf. app f x)

=⇒ size (lam λf. app f x) + 1

=⇒ size (app f x) + 1 + 1

=⇒ size f + size x + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

“the whole HOAS approach by its very nature disallows a

feature that we regard of key practical importance: the ability

to manipulate names of bound variables explicitly in

computation and proof. ” [Pitts, Gabbay’97]
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Back in 2008. . .



LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

Ψ

LF Context

`̀ M

LF Term

: A

LF Type
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LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf.app f x

LF Term

: tm

LF Type
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LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf. app f x

LF Term

: tm

LF Type

What is the type of app f x ? – Its type is dx:tm, f:tm ` tme.
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LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.) Contextual Type

lam λx. lam λf.app f x dx:tm ` tme

lam λx. lam λf. app f x dx:tm, f:tm ` tme

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf. app f x

LF Term

: tm

LF Type

What is the type of app f x ? – Its type is dx:tm, f:tm ` tme.
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Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dx:tm, f:tm ` tme ; x:tm

LF Context

`̀ lam λf . h︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dx:tm, f:tm ` tme
• It can be instantiated with a contextual term dx,f` app f xe
• Contextual types (` ) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions
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Contextual Type Theory1 (CTT) [Nanevski, Pfenning, Pientka’08]

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

LF Variable Contextual Variable

x :A ∈ Ψ
Γ; Ψ `̀ x : A

x : dΦ ` Ae ∈ Γ Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ x [σ]︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ

1Footnote for nerds: CTT is a generalization of modal S4.
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The Tip of the Iceberg: Beluga [POPL’08, POPL’12, ICFP’16,. . .]

Main Proof

Eigenvariables

Hypothesis
Context

Variables
Renaming

Derivation Tree

Substitution

Scope Binding

Contextual
Logical Framework LF Γ; Ψ `̀ M : A

Proofs
as Functional Programs

Γ `̀ t : T

Terms t ::= dΨ ` Me | . . .
Types T ::= dΨ ` Ae | . . .

14



Revisiting the program size

size d ` lam λx.lam λf. app f xe
=⇒ size dx ` lam λf. app f xe + 1

=⇒ size dx,f ` app f xe + 1 + 1

=⇒ size dx,f ` fe + size dx,f ` xe + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

Corresponding program:

size : Πγ:ctx. dγ ` tme → int

size dγ ` #pe = 0

size dγ ` lam λx. Me = size dγ,x ` Me + 1

size dγ ` app M Ne = size dγ ` Me + size dγ ` Ne + 1;

• Abstract over context γ and introduce special variable pattern #p

• Higher-order pattern matching [Miller’91]
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What Programs / Proofs Can We Write?

• Certified programs:

Type-preserving closure conversion and hoisting [CPP’13]

Joint work with O. Savary-Bélanger, S. Monnier

• Inductive proofs:

Logical relations proofs (Kripke-style) [MSCS’18]

Joint work with A. Cave

POPLMark Reloaded: Strong Normalization for STLC using

Kripke-style Logical Relations

Joint work with A. Abel, G. Allais, A. Hameer, A. Momigliano, S.

Schäfer, K. Stark

• Coinductive proofs:

Bisimulation proof using Howe’s Method [MSCS’18]

Joint work with D. Thibodeau and A. Momigliano 16



Sounds cool. . . but how can we get

this into type theories (like Agda)?



The Essence of the Problem

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

The strict separation between contextual LF and computations

means we cannot embed computation terms directly.

Contextual Variable Rule

x : dΦ ` Ae ∈ Γ Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ x [σ]︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ
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The Essence of the Problem and its Solution?

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

What if we did?

Rule for Embedding Computations

Γ `̀ t : dΦ ` Ae Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ btcσ︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ
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A Type Theory for Defining Logics and Proofs [LICS’19]

Joint work with A. Abel, F. Ferreira, D. Thibodeau, R. Zucchini

• Hierarchy of universes and type-level computation

• Writing proofs about functions (such as size)

LF (intensional)

Γ; Ψ `̀ M : A

Computation (extensional)

Γ `̀ t : τ

quote / box dΨ ` Me

unquote / unbox btcσ

see our LICS’19 paper and the extended report for the technical

development of the normalization proof.
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Sketch: Translation Between STLC and CCC

STLC

tm: obj → type

tUnit: tm one.

tPair: tm A → tm B

→ tm (cross A B).

tFst : tm (cross A B)

→ tm A.

tSnd : tm (cross A B)

→ tm B.

tLam : (tm A → tm B)

→ tm (arrow A B).

tApp : tm (arrow A B) → tm A

→ tm B.

Cartesian Closed Categories (CCC)

mor : obj → obj → type.

id : mor A A.

@ : mor B C → mor A B

→ mor A C.

drop: mor A one.

fst : mor (cross A B) A.

snd : mor (cross A B) B.

pair: mor A B → mor A C

→ mor A (cross B C).

app : mor (cross (arrow B C) B) C.

cur : mor (cross A B) C

→ mor A (arrow B C).

itm

19



Sketch: Translation Between STLC and CCC

STLC

tm: obj → type.

Cartesian Closed Categories (CCC)

mor:obj → obj → type

itm

A concrete example: itm d ` tLam λx. tLam λf. tApp f xe

=⇒∗ itm dx:tm A,f:tm (arrow A B) ` tApp f xe

Translate an LF context γ to cross product: ictx:Πγ:ctx.d ` obje

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm bAce → d ` mor bictx γc bAce
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Translate an LF context γ to cross product

ictx:Πγ:ctx.d ` obje

fn · = d ` onee
| γ, x:tm bAc = d ` cross bictx γc bAce;

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)

21



Translate an LF context γ to cross product

ictx:Πγ:ctx.d ` obje

fn · = d ` onee
| γ, x:tm (bAc with ·) = d ` cross bictx γc bAce;

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)
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Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm bAce → d ` mor bictx γc bAce

Idea: Write a recursive function pattern matching on m

fn dγ `# pe = ivar γ p

| dγ ` tUnite = d ` drope
| dγ ` tFst bece = d ` fst @ bitm ece
| dγ ` tSnd bece = d ` snd @ bitm ece
| dγ ` tPair be1c be2ce = d ` pair bitm e1c bitm e2ce
| dγ ` tLam λx.bece = d ` cur bitm ece
| dγ ` tApp be1c be2ce = d ` app @ pair bitm e1c bitm e2ce;
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Translation of CCC to STLC

Given a morphism between A and B, we build a term of type B with

one variable of type A.

imorph:Π A:d ` obje.Π B:d ` obje.

d ` mor bAc bBce ⇒ dx:tm bAc ` tm bBce

fn d ` ide = dx:tm _ ` xe
| d ` drope = dx:tm _ ` tUnite
| d ` fste = dx:tm _ ` tFst xe
| d ` snde = dx:tm _ ` tSnd xe
| d ` pair bfc bgce = dx:tm _ ` tPair bimorph fc bimorph gce
| d ` cur bfce = dx:tm _ ` tLam λy.(bimorph fc with tPair x y)e
| d ` bfc @ bgce = dx:tm _ ` bimorph fc with bimorph gce
| d ` appe = dx:tm _ ` tApp (tFst x) (tSnd x)e;
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Bridging the Gap between LF and Martin Löf Type Theory
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What we’ve already done – What’s Next

Theory

X Normalization

X Decidable equality

• Categorical semantics

• . . .

Implementation and Case Studies

• Build an extension to Coq/Agda/Beluga
• Case studies:

– Equivalence of STLC and CCC

– Homotopy Type Theory (see relations to Crisp Type Theory)

• Meta-Programming (Tactics)

• Compilation

• . . .
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Towards More Civilized High-Level Proof Languages

Lesson 1: Contextual types provide a type-theoretic framework to

think about syntax trees within a context of assumptions.

Lesson 2: Contextual types allow us to mediate and mix

between strong (computation-level) function types and

weak (HOAS) function types.

Lesson 3: Existing proof technique of defining a model for

well-typed terms based on their semantic type scales.

Taken Together: This is a first step towards bridging the

long-standing gap between LF and Martin Löf type theories.
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