
Cocon:

A Type Theory for Defining Logics and Proofs

Brigitte Pientka

McGill University

Montreal, Canada

What are good high-level proof

languages that make it easier to

mechanize metatheory?

What are good high-level proof

languages that make it easier to

mechanize metatheory?

Theory Def.

Operational Semantics

Type System Model

Type Theory

...

Logic

Type Inference Algorithm

Program Transformations

Theory Def.

Operational Semantics

Type System Model

Type Theory

...

Logic

Type Inference Algorithm

Program Transformations

Bisimulation

Program Equivalence

Completeness

Consistency

Soundness of Prog. Transform.

Decidability of Type Checking

Type Safety

Metatheory

Theory Def.

Operational Semantics

Type System Model

Type Theory

...

Logic

Type Inference Algorithm

Program Transformations

Bisimulation

Program Equivalence

Completeness

Consistency

Soundness of Prog. Transform.

Decidability of Type Checking

Type Safety

Metatheory

Mechanized

Metatheory

implemented

in a proof assistant

Correct proofs are tricky to write.

On paper:

• Challenging to keep track of all the details

• Easy to skip over details

• Difficult to understand interaction between different features

• Difficulties increase with size

In a proof assistant:

• A lot of overhead in building basic infrastructure

• May get lost in the technical, low-level details

• Time consuming

• Experience, experience, experience

2

Mechanizing Normalization for STLC

“To those that doubted de Bruijn, I wished

to prove them wrong, or discover why they

were right. Now, after some years and

many hundred hours of labor, I can say

with some authority: they were right. De

Bruijn indices are foolishly difficult for this

kind of proof. [. . .] The full proof runs

to 3500 lines, although that relies on a

further library of 1900 lines of basic facts

about lists and sets. [. . .] the cost of de

Bruijn is partly reflected in the painful

1600 lines that are used to prove facts

about “shifting” and “substitution”.”

Ezra Cooper (PhD Student)

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq 3

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq

Mechanizing Normalization for STLC

“To those that doubted de Bruijn, I wished

to prove them wrong, or discover why they

were right. Now, after some years and

many hundred hours of labor, I can say

with some authority: they were right. De

Bruijn indices are foolishly difficult for this

kind of proof. [. . .] The full proof runs

to 3500 lines, although that relies on a

further library of 1900 lines of basic facts

about lists and sets. [. . .] the cost of de

Bruijn is partly reflected in the painful

1600 lines that are used to prove facts

about “shifting” and “substitution”.”

Ezra Cooper (PhD Student)

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq

A. Rossberg, C. Russo, D. Dreyer. F-ing Modules. JFP, 2014

3

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq

Abstraction, Abstraction, Abstraction

“The motivation behind the work in very-high-level languages is

to ease the programming task by providing the programmer

with a language containing primitives or abstractions suitable to

his problem area. The programmer is then able to spend his

effort in the right place; he concentrates on solving his problem,

and the resulting program will be more reliable as a result.

Clearly, this is a worthwhile goal.” B. Liskov [1974]

4

Abstraction, Abstraction, Abstraction

“The motivation behind the work in very-high-level languages is

to ease the programming task by providing the programmer

with a language containing primitives or abstractions suitable to

his problem area. The programmer is then able to spend his

effort in the right place; he concentrates on solving his problem,

and the resulting program will be more reliable as a result.

Clearly, this is a worthwhile goal.” B. Liskov [1974]

Goal:

A dependent type theory (similar to Coq or Agda) that provides

the right abstractions for compactly and elegantly defining logics

and proofs.

4

“To know your future you must

know your past.” – G. Santayana

Back in the 80s...

1987 • R. Harper, F. Honsell, G. Plotkin: A Framework for

Defining Logics, LICS’87

1988 • F. Pfenning and C. Elliott: Higher-Order Abstract

Syntax, PLDI’88

• LF = Dependently Typed Lambda Calculus (λΠ) serves as

a Meta-Language for representing formal systems

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF

5

Back in the 80s...

1987 • R. Harper, F. Honsell, G. Plotkin: A Framework for

Defining Logics, LICS’87

1988 • F. Pfenning and C. Elliott: Higher-Order Abstract

Syntax, PLDI’88

• LF = Dependently Typed Lambda Calculus (λΠ) serves as

a Meta-Language for representing formal systems

• Higher-order Abstract Syntax (HOAS) :

Uniformly model binding structures in Object Language with

(intensional) functions in LF

5

Representing Types and Terms in LF – In a Nutshell

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

On Paper (Object Language) In LF (Meta Language)

lam x :nat.x lam nat λx.x

lam x :nat. (lam x :nat⇒nat.x) lam nat λx.(lam (arr nat nat) λx.x)

lam x :nat. (lam f :nat⇒nat.app f x) lam nat λx.(lam (arr nat nat) λf.app f x)

Higher-order Abstract Syntax (HOAS):

• Uniformly model bindings with (intensional) functions in LF

• Inherit α-renaming and single substitutions

Model

6

Representing Types and Terms in LF – In a Nutshell

Types A,B ::= nat | A⇒ B Terms M ::= x | lam x :A.M | app M N

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

On Paper (Object Language) In LF (Meta Language)

lam x :nat.x lam nat λx.x

lam x :nat. (lam x :nat⇒nat.x) lam nat λx.(lam (arr nat nat) λx.x)

lam x :nat. (lam f :nat⇒nat.app f x) lam nat λx.(lam (arr nat nat) λf.app f x)

Higher-order Abstract Syntax (HOAS):

• Uniformly model bindings with (intensional) functions in LF

• Inherit α-renaming and single substitutions

Model

6

Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b

7

Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b

7

Uniformly Model Binding Structures using LF Functions

Types A,B ::= nat | A⇒ B |
α | ∀α.A

Terms M ::= x | lam x :A.M | app M N |
let x = M in N | tlam α.M | . . .

LF Representation

obj: type.

nat: obj.

arr: obj → obj → obj.

all: (obj → obj) → obj.

tm: type.

lam: obj → (tm → tm) → tm.

app: tm → tm → tm.

let: tm → (tm → tm) → tm.

tlam: (obj → tm) → tm.

On Paper (Object Language) In LF (Meta Language)

tlam α. (lam x :α.x) tlam λa.(lam a λx.x)

∀α.∀β.α⇒ β all λa.all λb.arr a b

LF = Dependently Typed Lambda Calculus λ
Π

• LF functions only encode variable scope

no recursion, no pattern matching, etc.

• HOAS trees = Syntax trees with binders

• Benefit: α-renaming and substitution principles

• Scales: Model derivation trees

- Hypothetical derivations as LF functions

- Parametric derivations as LF functions

7

Sounds cool. . . can I do this in

OCaml or Agda?

An Attempt in OCaml

and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

8

An Attempt in OCaml

and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

8

An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

8

An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)

2 let apply = function (Lam f) -> f

3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.

Agda

data tm : type = lam : (tm → tm) → tm

Violates positivity restriction

Functions in OCaml and Agda are opaque (black box).

• We can observe the result that a function computes

• We cannot pattern match to inspect the function body

8

OK. . . so, how do we write recursive

programs over with HOAS trees?

We clearly want pattern matching, since

a HOAS tree is a data structure.

An Attempt to Compute the Size of a Term

size (lam λx.lam λf. app f x)

=⇒ size (lam λf. app f x) + 1

=⇒ size (app f x) + 1 + 1

=⇒ size f + size x + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

“the whole HOAS approach by its very nature disallows a

feature that we regard of key practical importance: the ability

to manipulate names of bound variables explicitly in

computation and proof. ” [Pitts, Gabbay’97]

9

Back in 2008. . .

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

Ψ

LF Context

`̀ M

LF Term

: A

LF Type

10

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf.app f x

LF Term

: tm

LF Type

10

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.)

lam λx. lam λf.app f x

lam λx. lam λf. app f x

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf. app f x

LF Term

: tm

LF Type

What is the type of app f x ? – Its type is dx:tm, f:tm ` tme.

11

LF and Holes in HOAS trees – Revisited

In LF (Meta Lang.) Contextual Type

lam λx. lam λf.app f x dx:tm ` tme

lam λx. lam λf. app f x dx:tm, f:tm ` tme

LF Typing Judgment:

x:tm

LF Context

`̀ lam λf. app f x

LF Term

: tm

LF Type

What is the type of app f x ? – Its type is dx:tm, f:tm ` tme.

11

Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dx:tm, f:tm ` tme ; x:tm

LF Context

`̀ lam λf . h︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dx:tm, f:tm ` tme
• It can be instantiated with a contextual term dx,f` app f xe
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

12

Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dx:tm, f:tm ` tme ; x:tm

LF Context

`̀ lam λf . h︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dx:tm, f:tm ` tme
• It can be instantiated with a contextual term dx,f` app f xe
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

12

Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dy:tm, g:tm ` tme ; x:tm

LF Context

`̀ lam λf . h︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dy:tm, g:tm ` tme
• It can be instantiated with a contextual term dy,g` app g ye
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

12

Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

Meta Context

h: dy:tm, g:tm ` tme ; x:tm

LF Context

`̀ lam λf . h[x/y, f/g]︸ ︷︷ ︸
LF Term

: tm

LF Type

• h is a contextual variable

• It has the contextual type dy:tm, g:tm ` tme
• It can be instantiated with a contextual term dy,g` app g ye
• Contextual types (`) reify LF typing derivations (`̀)

WAIT! . . . whatever we plug in for h may contain free LF variables?

and we want it to be stable under α-renaming . . .

Solution: Contextual variables are associated with LF substitutions

12

Contextual Type Theory1 (CTT) [Nanevski, Pfenning, Pientka’08]

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

LF Variable Contextual Variable

x :A ∈ Ψ
Γ; Ψ `̀ x : A

x : dΦ ` Ae ∈ Γ Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ x [σ]︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ

1Footnote for nerds: CTT is a generalization of modal S4.

13

The Tip of the Iceberg: Beluga [POPL’08, POPL’12, ICFP’16,. . .]

Main Proof

Eigenvariables

Hypothesis
Context

Variables
Renaming

Derivation Tree

Substitution

Scope Binding

Contextual
Logical Framework LF Γ; Ψ `̀ M : A

Proofs
as Functional Programs

Γ `̀ t : T

Terms t ::= dΨ ` Me | . . .
Types T ::= dΨ ` Ae | . . .

14

Revisiting the program size

size d ` lam λx.lam λf. app f xe
=⇒ size dx ` lam λf. app f xe + 1

=⇒ size dx,f ` app f xe + 1 + 1

=⇒ size dx,f ` fe + size dx,f ` xe + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

Corresponding program:

size : Πγ:ctx. dγ ` tme → int

size dγ ` #pe = 0

size dγ ` lam λx. Me = size dγ,x ` Me + 1

size dγ ` app M Ne = size dγ ` Me + size dγ ` Ne + 1;

• Abstract over context γ and introduce special variable pattern #p

• Higher-order pattern matching [Miller’91]

15

Revisiting the program size

size d ` lam λx.lam λf. app f xe
=⇒ size dx ` lam λf. app f xe + 1

=⇒ size dx,f ` app f xe + 1 + 1

=⇒ size dx,f ` fe + size dx,f ` xe + 1 + 1 + 1

=⇒ 0 + 0 + 1 + 1 + 1

Corresponding program:

size : Πγ:ctx. dγ ` tme → int

size dγ ` #pe = 0

size dγ ` lam λx. Me = size dγ,x ` Me + 1

size dγ ` app M Ne = size dγ ` Me + size dγ ` Ne + 1;

• Abstract over context γ and introduce special variable pattern #p

• Higher-order pattern matching [Miller’91]

15

What Programs / Proofs Can We Write?

• Certified programs:

Type-preserving closure conversion and hoisting [CPP’13]

Joint work with O. Savary-Bélanger, S. Monnier

• Inductive proofs:

Logical relations proofs (Kripke-style) [MSCS’18]

Joint work with A. Cave

POPLMark Reloaded: Strong Normalization for STLC using

Kripke-style Logical Relations

Joint work with A. Abel, G. Allais, A. Hameer, A. Momigliano, S.

Schäfer, K. Stark

• Coinductive proofs:

Bisimulation proof using Howe’s Method [MSCS’18]

Joint work with D. Thibodeau and A. Momigliano 16

Sounds cool. . . but how can we get

this into type theories (like Agda)?

The Essence of the Problem

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

The strict separation between contextual LF and computations

means we cannot embed computation terms directly.

Contextual Variable Rule

x : dΦ ` Ae ∈ Γ Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ x [σ]︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ

17

The Essence of the Problem and its Solution?

Meta Context

(global)

Γ ; Ψ

LF Context

(local)

`̀ M

LF Term

: A

LF Type

What if we did?

Rule for Embedding Computations

Γ `̀ t : dΦ ` Ae Γ; Ψ `̀ σ : Φ

Γ; Ψ `̀ btcσ︸︷︷︸
Closure

: [σ]A︸︷︷︸
Apply subst. σ

17

A Type Theory for Defining Logics and Proofs [LICS’19]

Joint work with A. Abel, F. Ferreira, D. Thibodeau, R. Zucchini

• Hierarchy of universes and type-level computation

• Writing proofs about functions (such as size)

LF (intensional)

Γ; Ψ `̀ M : A

Computation (extensional)

Γ `̀ t : τ

quote / box dΨ ` Me

unquote / unbox btcσ

see our LICS’19 paper and the extended report for the technical

development of the normalization proof.
18

Sketch: Translation Between STLC and CCC

STLC

tm: obj → type

tUnit: tm one.

tPair: tm A → tm B

→ tm (cross A B).

tFst : tm (cross A B)

→ tm A.

tSnd : tm (cross A B)

→ tm B.

tLam : (tm A → tm B)

→ tm (arrow A B).

tApp : tm (arrow A B) → tm A

→ tm B.

Cartesian Closed Categories (CCC)

mor : obj → obj → type.

id : mor A A.

@ : mor B C → mor A B

→ mor A C.

drop: mor A one.

fst : mor (cross A B) A.

snd : mor (cross A B) B.

pair: mor A B → mor A C

→ mor A (cross B C).

app : mor (cross (arrow B C) B) C.

cur : mor (cross A B) C

→ mor A (arrow B C).

itm

19

Sketch: Translation Between STLC and CCC

STLC

tm: obj → type.

Cartesian Closed Categories (CCC)

mor:obj → obj → type

itm

A concrete example: itm d ` tLam λx. tLam λf. tApp f xe

=⇒∗ itm dx:tm A,f:tm (arrow A B) ` tApp f xe

Translate an LF context γ to cross product: ictx:Πγ:ctx.d ` obje

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm bAce → d ` mor bictx γc bAce

20

Sketch: Translation Between STLC and CCC

STLC

tm: obj → type.

Cartesian Closed Categories (CCC)

mor:obj → obj → type

itm

A concrete example: itm d ` tLam λx. tLam λf. tApp f xe

=⇒∗ itm dx:tm A,f:tm (arrow A B) ` tApp f xe

Translate an LF context γ to cross product: ictx:Πγ:ctx.d ` obje

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm bAce → d ` mor bictx γc bAce

20

Sketch: Translation Between STLC and CCC

STLC

tm: obj → type.

Cartesian Closed Categories (CCC)

mor:obj → obj → type

itm

A concrete example: itm d ` tLam λx. tLam λf. tApp f xe

=⇒∗ itm dx:tm A,f:tm (arrow A B) ` tApp f xe

Translate an LF context γ to cross product: ictx:Πγ:ctx.d ` obje

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm bAce → d ` mor bictx γc bAce

20

Translate an LF context γ to cross product

ictx:Πγ:ctx.d ` obje

fn · = d ` onee
| γ, x:tm bAc = d ` cross bictx γc bAce;

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)

21

Translate an LF context γ to cross product

ictx:Πγ:ctx.d ` obje

fn · = d ` onee
| γ, x:tm (bAc with ·) = d ` cross bictx γc bAce;

Example: ictx (x1:tm A1, x2:tm A2) =⇒ (cross (cross one A1) A2)

22

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm bAce → d ` mor bictx γc bAce

Idea: Write a recursive function pattern matching on m

fn dγ `# pe = ivar γ p

| dγ ` tUnite = d ` drope
| dγ ` tFst bece = d ` fst @ bitm ece
| dγ ` tSnd bece = d ` snd @ bitm ece
| dγ ` tPair be1c be2ce = d ` pair bitm e1c bitm e2ce
| dγ ` tLam λx.bece = d ` cur bitm ece
| dγ ` tApp be1c be2ce = d ` app @ pair bitm e1c bitm e2ce;

23

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm (bAc with·)e → d ` mor bictx γc bAce

Idea: Write a recursive function pattern matching on m

fn dγ `# pe = ivar γ p

| dγ ` tUnite = d ` drope
| dγ ` tFst bece = d ` fst @ bitm ece
| dγ ` tSnd bece = d ` snd @ bitm ece
| dγ ` tPair be1c be2ce = d ` pair bitm e1c bitm e2ce
| dγ ` tLam λx.bece = d ` cur bitm ece
| dγ ` tApp be1c be2ce = d ` app @ pair bitm e1c bitm e2ce;

23

Translate STLC to CCC

itm:Πγ:ctx.ΠA:d ` obje.dγ ` tm (bAc with·)e → d ` mor bictx γc bAce

Idea: Write a recursive function pattern matching on m

fn dγ `# pe = ivar γ p

| dγ ` tUnite = d ` drope
| dγ ` tFst bece = d ` fst @ bitm ece
| dγ ` tSnd bece = d ` snd @ bitm ece
| dγ ` tPair be1c be2ce = d ` pair bitm e1c bitm e2ce
| dγ ` tLam λx.bece = d ` cur bitm ece
| dγ ` tApp be1c be2ce = d ` app @ pair bitm e1c bitm e2ce;

23

Translation of CCC to STLC

Given a morphism between A and B, we build a term of type B with

one variable of type A.

imorph:Π A:d ` obje.Π B:d ` obje.

d ` mor bAc bBce ⇒ dx:tm bAc ` tm bBce

fn d ` ide = dx:tm _ ` xe
| d ` drope = dx:tm _ ` tUnite
| d ` fste = dx:tm _ ` tFst xe
| d ` snde = dx:tm _ ` tSnd xe
| d ` pair bfc bgce = dx:tm _ ` tPair bimorph fc bimorph gce
| d ` cur bfce = dx:tm _ ` tLam λy.(bimorph fc with tPair x y)e
| d ` bfc @ bgce = dx:tm _ ` bimorph fc with bimorph gce
| d ` appe = dx:tm _ ` tApp (tFst x) (tSnd x)e;

24

Translation of CCC to STLC

Given a morphism between A and B, we build a term of type B with

one variable of type A.

imorph:Π A:d ` obje.Π B:d ` obje.

d ` mor bAc bBce ⇒ dx:tm bAc ` tm (bBc with·)e

fn d ` ide = dx:tm _ ` xe
| d ` drope = dx:tm _ ` tUnite
| d ` fste = dx:tm _ ` tFst xe
| d ` snde = dx:tm _ ` tSnd xe
| d ` pair bfc bgce = dx:tm _ ` tPair bimorph fc bimorph gce
| d ` cur bfce = dx:tm _ ` tLam λy.(bimorph fc with tPair x y)e
| d ` bfc @ bgce = dx:tm _ ` bimorph fc with bimorph gce
| d ` appe = dx:tm _ ` tApp (tFst x) (tSnd x)e;

24

Translation of CCC to STLC

Given a morphism between A and B, we build a term of type B with

one variable of type A.

imorph:Π A:d ` obje.Π B:d ` obje.

d ` mor bAc bBce ⇒ dx:tm bAc ` tm (bBc with·)e

fn d ` ide = dx:tm _ ` xe
| d ` drope = dx:tm _ ` tUnite
| d ` fste = dx:tm _ ` tFst xe
| d ` snde = dx:tm _ ` tSnd xe
| d ` pair bfc bgce = dx:tm _ ` tPair bimorph fc bimorph gce
| d ` cur bfce = dx:tm _ ` tLam λy.(bimorph fc with tPair x y)e
| d ` bfc @ bgce = dx:tm _ ` bimorph fc with bimorph gce
| d ` appe = dx:tm _ ` tApp (tFst x) (tSnd x)e;

24

Bridging the Gap between LF and Martin Löf Type Theory

25

What we’ve already done – What’s Next

Theory

X Normalization

X Decidable equality

• Categorical semantics

• . . .

Implementation and Case Studies

• Build an extension to Coq/Agda/Beluga
• Case studies:

– Equivalence of STLC and CCC

– Homotopy Type Theory (see relations to Crisp Type Theory)

• Meta-Programming (Tactics)

• Compilation

• . . .
26

Towards More Civilized High-Level Proof Languages

Lesson 1: Contextual types provide a type-theoretic framework to

think about syntax trees within a context of assumptions.

Lesson 2: Contextual types allow us to mediate and mix

between strong (computation-level) function types and

weak (HOAS) function types.

Lesson 3: Existing proof technique of defining a model for

well-typed terms based on their semantic type scales.

Taken Together: This is a first step towards bridging the

long-standing gap between LF and Martin Löf type theories.

27

	What are good high-level proof languages that make it easier to mechanize metatheory?
	What are good high-level proof languages that make it easier to orangemechanize metatheory?
	``To know your future you must know your past.'' – G. Santayana
	Sounds cool… can I do this in OCaml or Agda?
	OK… so, how do we write recursive programs over with HOAS trees? We clearly want pattern matching, since a HOAS tree is a data structure.
	Back in 2008…
	Sounds cool… but how can we get this into type theories (like Agda)?

