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Correct proofs are tricky to write.

On paper:

e Challenging to keep track of all the details
e Easy to skip over details
e Difficult to understand interaction between different features

e Difficulties increase with size

In a proof assistant:

e A lot of overhead in building basic infrastructure
e May get lost in the technical, low-level details
e Time consuming

e Experience, experience, experience



Mechanizing Normalization for STLC

“To those that doubted de Bruijn, | wished
to prove them wrong, or discover why they
were right. Now, after some years and
many hundred hours of labor, | can say
with some authority: they were right. De
Bruijn indices are foolishly difficult for this
kind of proof. [...] The full proof runs
to 3500 lines, although that relies on a
further library of 1900 lines of basic facts
about lists and sets. [...] the cost of de
Bruijn is partly reflected in the painful
1600 lines that are used to prove facts
about “shifting” and ‘substitution”.”
Ezra Cooper (PhD Student)

https://github.com/ezrakilty/sn-stlc-de-bruijn-coq 3
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Abstraction, Abstraction, Abstraction

“The motivation behind the work in very-high-level languages is
to ease the programming task by providing the programmer
with a language containing primitives or abstractions suitable to
his problem area. The programmer is then able to spend his
effort in the right place; he concentrates on solving his problem,
and the resulting program will be more reliable as a result.
Clearly, this is a worthwhile goal.” B. Liskov [1974]
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“To know your future you must
know your past.” — G. Santayana



Back in the 80s...



Back in the 80s...

1987 R. Harper, F. Honsell, G. Plotkin: A Framework for
Defining Logics, LICS'87

1988 F. Pfenning and C. Elliott: Higher-Order Abstract
Syntax, PLDI'88

e LF = Dependently Typed Lambda Calculus (\") serves as
a Meta-Language for representing formal systems

e Higher-order Abstract Syntax (HOAS) :
Uniformly model binding structures in Object Language with
(intensional) functions in LF
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Representing Types and Terms in LF — In a Nutshell

Types A,B :=nat | A= B Terms M ::= x | lam x:A.M | app M N

LF Representation

obj: type. tm: type.
nat: obj. lam: obj — (tm — tm) — tm.
arr: obj — obj — obj. app: tm — tm — tm.

On Paper (Object Language) In LF (Meta Language)

|

lam x:nat.x ‘ lam nat Ax.x
|
|

lam x:nat. (lam x:nat=>nat.x) lam nat Ax.(lam (arr nat nat) Ax.x)

lam x:nat. (lam f:nat=>nat.app f x) | lam nat )x.(lam (arr nat nat) Af.app f x)

Higher-order Abstract Syntax (HOAS):

e Uniformly model bindings with (intensional) functions in LF

e Inherit a-renaming and single substitutions



Uniformly Model Binding Structures using LF Functions

Types A,B :=nat | A= B| Terms M ::= x | lam x:A.M | app M N |
a|Va.A let x=Min N |tlam a.M | ...



Uniformly Model Binding Structures using LF Functions

Types A,B :=nat | A= B| Terms M ::= x | lam x:A.M | app M N |
a|Va.A let x=Min N |tlam a.M | ...

LF Representation

obj: type. tm: type.

nat: obj. lam: obj — (tm — tm) — tm.
arr: obj — obj — obj. app: tm — tm — tm.

all: (obj — obj) — obj. let: tm — (tm — tm) — tm.

tlam: (obj — tm) — tm.

On Paper (Object Language) ‘ In LF (Meta Language)
tlam . (lam x:c.x) ‘ tlam Ma.(lam a Ax.x)
VaVB.oo = | all )a.all Ab.arr a b




Uniformly Model Binding Structures using LF Fun

Va - ~all Ab.arr a b



Sounds cool. .. can | do this in
OCaml or Agda?



An Attempt in OCaml

OCaml

1 type tm = Lam of (tm -> tm)
> let apply = function (Lam f) -> £
3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?
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> let apply = function (Lam f) -> £
3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.



An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)
> let apply = function (Lam f) -> £
3 let omega = Lam (function x -> apply x x)

What happens, when we try to evaluate apply omega omega?

It will loop.
Agda

data tm : type = lam : (tm — tm) — tm

Violates positivity restriction



An Attempt in OCaml and Agda

OCaml

1 type tm = Lam of (tm -> tm)
> let apply = function (Lam f) =
3 let omega

: (tm

Violates positivity restriction



OK... so, how do we write recursive
programs over with HOAS trees?
We clearly want pattern matching, since
a HOAS tree is a data structure.



An Attempt to Compute the Size of a Term

size (lam Ax.lam Af. app f x)

— size (lam Af. app f x) + 1

— size (app £ x) +1+1
== size f 4+ sizex +1+1+1
— 0 + 0 +1+1+41

“the whole HOAS approach by its very nature disallows a
feature that we regard of key practical importance: the ability
to manipulate names of bound variables explicitly in
computation and proof. ” [Pitts, Gabbay'97]



Back in 2008. ..




LF and Holes in HOAS trees — Reuvisited

In LF (Meta Lang.)

lam )\X.‘lam)\f.app f x‘

lam Ax. lam )\f.

LF Typing Judgment:

L M A

| I !

LF Context LF Term  LF Type

10
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LF and Holes in HOAS trees — Reuvisited

In LF (Meta Lang.) ‘ Contextual Type

lam )\X.‘lam)\f.app f X‘ [x:tm F tm]

lam Ax. lam)\f.‘ [x:tm, f:tm - tm]

LF Typing Judgment:

x:tm f lam Af.l:': tm
| T |

LF Context LF Term  LF Type

What is the type of I:' ? — Its type is [x:tm, f:tm - tm].

11



Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

h: [x:tm, f:tm b tm| ; xitm b lam Af. h D tm
Meta Context LF Context LF Term LF Type

e h is a contextual variable

e It has the contextual type [x:tm, f:tm - tm]
e It can be instantiated with a contextual term [x,fF app f x|
[ ]

Contextual types (F) reify LF typing derivations (f)

12
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Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

h: [y:itm, gitm b tm] ; x:tm & lam Af. h ©tm
Meta Context LF Context LF Term LF Type

e h is a contextual variable

e It has the contextual type [y:tm, g:itm - tm]

e It can be instantiated with a contextual term [y,gF app g y]
e Contextual types () reify LF typing derivations ()

WAIT! ... whatever we plug in for h may contain free LF variables?
and we want it to be stable under a-renaming ...

12



Contextual Type Theory [Nanevski, Pfenning, Pientka’08]

h: [y:tm, gitm - tm| ; x:tm - lam Af. hx/y, £/g] : tm

/ T T |

Meta Context LF Context LF Term LF Type

e h is a contextual variable

e It has the contextual type [y:tm, g:itm - tm]

e It can be instantiated with a contextual term [y,gF app g y]
e Contextual types () reify LF typing derivations ()

WAIT! ... whatever we plug in for h may contain free LF variables?
and we want it to be stable under a-renaming ...

Solution: Contextual variables are associated with LF substitutions

12



Contextual Type Theory! (CTT) [Nanevski, Pfenning, Pientka’08]

rs v = M: A
I

Meta Context / LF Context LF Term \ LF Type

(global) (local)
LF Variable Contextual Variable
xAc W x:[PFAlel TVko:o
MV x: A LV x[o] : [0]A
—~— —~—

Closure Apply subst. o

'Footnote for nerds: CTT is a generalization of modal S4.

13



The Tip of the Iceberg: Beluga [POPL’08, POPL’12, ICFP’16,...]

Terms t == [WEM]|...

as Functional Programs Types T == [V A]|...
Main Proof

/ /\ \

Renaming Scope€ Binding
Hypothesis Variables

o
Substitution gont Xt
\lar\a‘o\e j
A1) < ()

Proofs

tige

Oe{\\,a&'\"“ VM A

Contextual
Logical Framework LF

14



Revisiting the program size

size [ F lam Ax.lam Af. app f x|

size [« F lam Af. app f x| +1

size [x,f F app f x| +1+1
size [x,f F f] 4+ size [x,fF x] +14+1+41

I

0 aly 0 +1+1+1

ii5)



Revisiting the program size

size [ F lam Ax.lam Af. app f x|

—> size [« F lam Af. app f x| +1

— size [x,f F app f x| +1+1
= size [x,f F f] + size [x,fF x] +1+1+1
— 0 + 0 +1+1+1

Corresponding program:

size : [y:ctx. [y F tm] — int
size [y F #p| =0
size [y b lam Ax. M| = size [y,x b M| + 1

/

size [y F app M N| = size [y F M| + size [y F N] + 1;

e Abstract over context 7y and introduce special variable pattern #p

e Higher-order pattern matching [Miller'91]

ii5)



What Programs / Proofs Can We Write?

e Certified programs:
Type-preserving closure conversion and hoisting [CPP'13]
Joint work with O. Savary-Bélanger, S. Monnier

¢ Inductive proofs:
Logical relations proofs (Kripke-style) [MSCS'18]
Joint work with A. Cave

POPLMark Reloaded: Strong Normalization for STLC using
Kripke-style Logical Relations

Joint work with A. Abel, G. Allais, A. Hameer, A. Momigliano, S.
Schafer, K. Stark

e Coinductive proofs:
Bisimulation proof using Howe's Method [MSCS'18]
Joint work with D. Thibodeau and A. Momigliano 16



Sounds cool. .. but how can we get
this into type theories (like Agda)?




The Essence of the Problem
r: v + M : A

Meta Context / LF Context LF Term \ LF Type

(global) (local)

The strict separation between contextual LF and computations
means we cannot embed computation terms directly.

Contextual Variable Rule

x:[PFAlel ThVko:®
Vi x[o] : [0]A
N -

Closure Apply subst. o

17



The Essence of the Problem

Fiw - M: A
|

Meta Context / LF Context LF Term K LF Type

(global) (local)

What if we did?
Rule for Embedding Computations |

N=t:[oFA] ThVko:®
HVE [t : [c]A
—~— —

Closure Apply subst. o

17



A Type Theory for Defining Logics and Proofs [LICS’19]

Joint work with A. Abel, F. Ferreira, D. Thibodeau, R. Zucchini

e Hierarchy of universes and type-level computation
e Writing proofs about functions (such as size)

unquote / unbox [t],

LF (intensional) Computation (extensional)
VEM:A M=t:7

N

quote / box [W I M]

see our LICS'19 paper and the extended report for the technical

development of the normalization proof.
18



Sketch: Translation Between STLC and CCC

STLC Cartesian Closed Categories (CCC)
tm: obj — type mor : obj — obj — type.
tUnit: tm one. id : mor A A.
tPair: tm A — tm B (] :mor BC — mor A B

— tm (cross A B). — mor A C.
tFst : tm (cross A B) drop: mor A one.

— tm A. fst : mor (cross A B) A.
tSnd : tm (cross A B) snd : mor (cross A B) B.

— tm B. pair: mor AB — mor A C
tlam : (tm A — tm B) — mor A (cross B C).

— tm (arrow A B). app : mor (cross (arrow B C) B) C.
tApp : tm (arrow A B) — tm A cur : mor (cross A B) C

— tm B. — mor A (arrow B C).

\\ 7\
N ,,'
itm

19



Sketch: Translation Between STLC and CCC

STLC Cartesian Closed Categories (CCC)
tm: obj — type. mor:obj — obj — type
\ S
itm

A concrete example: itm [ - tLam Ax. tLam Af. tApp f x|
=—>* itm [x:tm A,f:tm (arrow A B)  tApp f x|

20
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Sketch: Translation Between STLC and CCC

STLC Cartesian Closed Categories (CCC)
tm: obj — type. mor:obj — obj — type
\ S
i';m

A concrete example: itm [ - tLam Ax. tLam Af. tApp f x|
=—>* itm [x:tm A,f:tm (arrow A B)  tApp f x|

Translate an LF context « to cross product: ictx:My:ctx.[ - obj]

Example: ictx (x1:tm A;, X2:tm Ay) — (cross (cross one A;) Ap)

Translate STLC to CCC
itm:My:ctx.MA: [ F obj].[vF tm |A]] — [+ mor [ictx | [A]]
20



Translate an LF context v to cross product

ictx:My:ctx.[ = obj]

fn
| v, x:tm [4]

[ F one]
[ F cross [ictx ] [A]];

Example: ictx (x1:tm A1, X2:tm Ay) = (cross (cross omne A;) A)

21



Translate an LF context v to cross product

ictx:My:ctx.[ = obj]

fn
| v, x:tm (|A| with )

[ F one]
[ F cross [ictx ] [A]];

Example: ictx (x1:tm A1, X2:tm Ay) = (cross (cross omne A;) A)

22



Translate STLC to CCC

itm:My:ctx.MA: [ F obj].[yF tm |A]] — [F mor |ictx | [A]]

23



Translate STLC to CCC

itm:My:ctx.MA: [ = obj].[yF tm (|A] with-)] — [k mor |ictx | [A]]

23



Translate STLC to CCC

itm:My:ctx.MA: [ = obj].[yF tm (|A] with-)] — [k mor |ictx | [A]]

Idea: Write a recursive function pattern matching on m

fn [y k% p] = ivar v p
| H F tUnit] = [  drop|
| [y tFst |e]] = [ F fst @ [itm e]]
I [y F tSnd |e]] = [ F snd @ [itm e]]
| [y F tPair |el] |e2]] = [ F pair |itm el] |itm e2]]
| [v B tlLam Ax.|e]] = [ F cur |itm e]]
| [v F tApp |el] |e2]] = [ app @ pair |itm el| [itm e2]];

23



Translation of CCC to STLC

Given a morphism between A and B, we build a term of type B with
one variable of type A.

imorph:M A:[ F obj].M B:[ - obj].
[ F mor |A| [B]] = [x:tm |[A] - tm |B]]

24



Translation of CCC to STLC

Given a morphism between A and B, we build a term of type B with
one variable of type A.

imorph:M A:[ F obj].M B:[ - obj].
[ F mor |A| |B]] = [x:tm |A] F tm (|B| with-)]
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Translation of CCC to STLC

Given a morphism between A and B, we build a term of type B with
one variable of type A.

imorph:M A:[ F obj].M B:[ - obj].
[ F mor |A| |B]] = [x:tm |A] F tm (|B| with-)]

fn [ F id] = [x:tm _ F x|
| [ + drop] = [x:tm _ F tUnit]
| [ F fst] = [x:tm _ | tFst x|
| [ F snd] = [x:tm _ F tSnd x|
| [ - pair [f] |g]]= [x:tm _ F tPair |imorph f| |imorph g]]
| [ F cur |f] = [x:tm _ F tLam Ay.(|imorph f]| with tPair x y)|
I [+ |f] @ |g]] = [x:tm _  |imorph f| with |imorph g]]
| [ - app] = [x:tm _ - tApp (tFst x) (tSnd x)];

24



Bridging the Gap between LF and Martin Lof Type Theory

25



What we’ve already done — What’s Next

Theory

v" Normalization
v Decidable equality
e Categorical semantics

O coo0
Implementation and Case Studies

e Build an extension to Coq/Agda/Beluga
e Case studies:

— Equivalence of STLC and CCC

— Homotopy Type Theory (see relations to Crisp Type Theory)
e Meta-Programming (Tactics)
e Compilation
o ...

26



Towards More Civilized High-Level Proof Languages

Lesson 1: Contextual types provide a type-theoretic framework to
think about syntax trees within a context of assumptions.

Lesson 2: Contextual types allow us to mediate and mix
between strong (computation-level) function types and
weak (HOAS) function types.

Lesson 3: Existing proof technique of defining a model for
well-typed terms based on their semantic type scales.

Taken Together: This is a first step towards bridging the
long-standing gap between LF and Martin Lof type theories.

27
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