
A Coq-definitional implementation
of the Lax Logical Framework LLFP ,

for “fast and loose” reasoning

F. Alessi, A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa
name.surname@uniud.it

Department of Mathematics, Computer Science, and Physics

University of Udine - Udine, Italy

Logical Frameworks and Meta-Languages: Theory and Practice
(LFMTP-2019)

Vancouver, Canada - June 22, 2019

We are grateful to Ivan Scagnetto and anonymous referees for helpful comments

and suggestions
F. Alessi et alii LLFP for fast and loose reasoning 1 / 1

Outline

1 Motivation

2 The Logical Frameworks LLFP and LLFP
+

3 The monadic nature of Locks in LLFP and LLFP
+

4 Applications of Locks

5 Implementation of LLFP and LLFP
+ in Coq

6 Call-by-value λ-calculus

7 Branch prediction

8 Optimistic concurrency control

F. Alessi et alii LLFP for fast and loose reasoning 2 / 1

Motivation for LLFP ’s

Prudentially and incrementally, extend conservatively LF so as to:
integrate in a unique Logical Framework, different epistemic sources of
evidence deriving from special-purpose tools, oracles, and even non-apodictic
ones e.g. explicit computations, deduction up-to, diagrams, physical
analogies;
factor-out, postpone, run in parallel the verification of “morally”
proof-irrelevant and time-consuming judgments and side conditions;
for supporting formal reasoning according to the fast and loose reasoning
paradigm, which trades off correctness for efficiency, by running in parallel
computationally demanding checks, or postponing tedious verifications until
worthwhile.
This paradigm is used

in everyday mathematics carried out in näıve Set Theory, or when
introducing blanket assumptions to be formalized and checked later, e.g.
typical ambiguity U ∈ U ;
in branch prediction in processor architecture or optimistic concurrency in
distributed systems.

LLFP ’s appear in a series of papers by subsets of the authors and also
I.Scagnetto, L.Liquori, and P.Maksimović since 2007 [8,9,10,11]. LLFP ’s
were presented at LFMTP in 2012-13-15-17.

F. Alessi et alii LLFP for fast and loose reasoning 3 / 1

The LLFP Logical Framework

Syntax

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, c :σ Signatures

Γ ∈ C Γ ::= ∅ | Γ, x :σ Contexts

K ∈ K K ::= Type | Πx :σ.K Kinds

σ, τ, ρ ∈ F σ ::= a | Πx :σ.τ | σN | LPN,σ[ρ] Families

M,N ∈ O M ::= c | x | λx :σ.M | M N |
LPN,σ[M] | UPN,σ[M] Objects

P ::= . . . Propositions

Reduction

(λx :σ.M)N →βL M[N/x] UPN,σ[LPN,σ[M]]→βL M

Typing judgments

Σ sig Σ is a valid signature

`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ

Γ `Σ σ : K σ has kind K in Γ and Σ

Γ `Σ M : σ M has type σ in Γ and Σ
F. Alessi et alii LLFP for fast and loose reasoning 4 / 1

The extended LLFP
+ Logical Framework

Syntax

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, c :σ Signatures

Γ ∈ C Γ ::= ∅ | Γ, x :σ Contexts

K ∈ K K ::= Type | Πx :σ.K Kinds

σ, τ, ρ ∈ F σ ::= a | Πx :σ.τ | σN | LPN,σ[ρ] | LPσ,K[ρ] Families

M,N ∈ O M ::= c | x | λx :σ.M | M N |
LPN,σ[M] | UPN,σ[M] | LPσ,K [M] | UPσ,K [M] Objects

Reduction (λx :σ.M)N →βL M[N/x]

UPU,V [LPU,V [W]]→βL W LPU,V [UPU,V [W]]→βL W

Typing judgments

Σ sig Σ is a valid signature

`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ

Γ `Σ σ : K σ has kind K in Γ and Σ

Γ `Σ M : σ M has type σ in Γ and Σ

F. Alessi et alii LLFP for fast and loose reasoning 5 / 1

LLFP ’s typing rules (objects)

The crucial rules are those dealing with lock types:

lock-introduction

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M] : LPN,σ[ρ]
(O·Lock)

lock-elimination

Γ `Σ M : LPN,σ[ρ] Γ `Σ N : σ P(Γ `Σ N : σ)

Γ `Σ UPN,σ[M] : ρ
(O·Top·Unlock)

guarded lock-elimination

Γ, x :τ `Σ LPS,σ[M] : LPS,σ[ρ]
Γ `Σ N : LPS′,σ′ [τ] σ=βLσ

′ S=βLS
′

Γ `Σ LPS,σ[M[UPS′,σ′ [N]/x]] : LPS,σ[ρ[UPS′,σ′ [N]/x]]
(O·Guarded ·Unlock)

F. Alessi et alii LLFP for fast and loose reasoning 6 / 1

Extended LLFP
+’s typing rules

Locks can access all sorts of judgments Γ ` U : V :

lock-introduction

Γ `Σ M : ρ Γ `Σ U : V

Γ `Σ LPU,V [M] : LPU,V [ρ]
(O·Lock)

un-guarded lock-elimination

Γ, x :τ `Σ M : ρ Γ `Σ N : LPU,V [τ]
P(Γ `Σ U ′ : V ′) V=βLV

′ U=βLU
′

Γ `Σ M[UPU′,V ′ [N]/x] : ρ[UPU′,V ′ [N]/x]
(O·Top·Unlock)

guarded lock-elimination

Γ, x :τ `Σ M : LPU′,V ′ [ρ] Γ `Σ N : LPU,V [τ]
V=βLV

′ U=βLU
′

Γ `Σ M[UPU′,V ′ [N]/x] : LPU′,V ′ [ρ][UPU′,V ′ [N]/x]
(O·Guarded ·Unlock)

F. Alessi et alii LLFP for fast and loose reasoning 7 / 1

LLFP
+’s typing rules (signatures, contexts, kinds, families)

Valid signatures

∅ sig
(S·Empty)

`Σ K a 6∈ Dom(Σ)

Σ, a:K sig
(S·Kind)

`Σ σ:Type c 6∈ Dom(Σ)

Σ, c:σ sig
(S·Type)

Context rules

Σ sig

`Σ ∅
(C ·Empty)

Γ `Σ σ:Type x 6∈ Dom(Γ)

`Σ Γ, x :σ
(C ·Type)

Kind rules

`Σ Γ

Γ `Σ Type
(K ·Type)

Γ, x :σ `Σ K

Γ `Σ Πx :σ.K
(K ·Pi)

Family rules

`Σ Γ a:K ∈ Σ

Γ `Σ a : K
(F ·Const)

Γ `Σ σ : Πx :τ.K Γ `Σ N : τ

Γ `Σ σ N : K [N/x]
(F ·App)

Γ, x :σ `Σ τ : Type

Γ `Σ Πx :σ.τ : Type
(F ·Pi)

Γ `Σ σ : K Γ `Σ K ′ K=βLK ′

Γ `Σ σ : K ′
(F ·Conv)

Γ `Σ ρ : Type Γ `Σ U : V

Γ `Σ LPU,V [ρ] : Type
(F ·Lock)

Γ, x :τ `Σ LPU,V [ρ] : Type

Γ `Σ N : LP
U′,V ′ [τ]

U=βLU′ V =βLV ′

Γ `Σ LPU,V [ρ[UP
U′,V ′ [N]/x]] : Type

(F ·Guarded·Unlock)

F. Alessi et alii LLFP for fast and loose reasoning 8 / 1

LLFP ’s formal properties

strong normalization

confluence

subject reduction (for well-behaved predicates)

Definition (Well-behaved predicates)

A finite set of predicates {Pi}i∈I is well-behaved if each P in this set satisfies the
following conditions:

Closure under signature, context weakening and permutation. If Σ and Ω are
valid signatures with every declaration in Σ also occurring in Ω,
and Γ and ∆ are valid contexts with every declaration in Γ also
occurring in ∆, and P(Γ `Σ α) holds, then P(∆ `Ω α) also holds.

Closure under substitution. If P(Γ, x :σ′, Γ′ `Σ N : σ) holds, and Γ `Σ N ′ : σ′,
then P(Γ, Γ′[N ′/x] `Σ N[N ′/x] : σ[N ′/x]) also holds.

Closure under reduction. If P(Γ `Σ N : σ) holds and N →βL N ′ (σ →βL σ′)
holds, then P(Γ `Σ N ′ : σ) (P(Γ `Σ N : σ′)) also holds.

F. Alessi et alii LLFP for fast and loose reasoning 9 / 1

The monadic nature of and LLFP and LLFP
+

for each U,V such that Γ ` U : V and well behaved P the operator LPU,V []
induces a strong monad, or equivalently a Kleisli triple, once we view the
Term Model of LLFP as a category;
the monad (TP , η, µ) is given by

η
∆
= λx : ρ. LP

U,V [x] : ρ→ LP
U,V [ρ]

µ
∆
= λx : LP

U,V [LP
U,V [ρ]]. LP

U,V [UP
U,V [UP

U,V [x]]] : LP
U,V [LP

U,V [ρ]]→ LP
U,V [ρ];

the guarded-unlock rules “morally” amount to Kleisli-composition, namely,
we can define an operator letP,U,V : (σ → LPU,V [τ])→ LPU,V [σ]→ LPU,V [τ] as

λx : σ → LPU,V [τ]. λy : LPU,V [σ]. x(UPU,V [y]) : (σ → LPU,V [τ])→ LPU,V [σ]→ LPU,V [τ];

the letP,U,V constructor could be taken as primitive instead of UPU,V [], but
then it should be extended also to types in the F ·Guarded ·Unlock rule;
the monad equalities hold:

LP
U,V [] induces a congruence,

LLFP
+ reduction rules amount to T .β an T .η;

associativity of Kleisli composition holds by computation, namely for terms
Q,N,P of appropriate types both letPQ(letPNM) and letP(letPQN)M
reduce to λx : τ.Q(UP

U,V [N(UP
U,V [Mx])].

F. Alessi et alii LLFP for fast and loose reasoning 10 / 1

Applications of Locks: side-conditions are MONADS

modal logics: a proof term is closed;

substructural logics e.g. affine elementary linear logic, non-commutative
linear logic: variables in proof terms are constrained appropriately;

Hoare’s logic: quantifier-free formulæ, and non-interference predicates;

Fitch-Prawitz Set Theory: proof terms are normalizable;

Poincaré’s principle: terms are computationally(definitionally) equivalent;

Deduction Modulo,
C A ⊃ B A ≡ C

B

reasoning on totality;

reasoning and programming up-to equivalence relations.

F. Alessi et alii LLFP for fast and loose reasoning 11 / 1

Applications of Locks: Squash types (after HOTT)

the operator LPA,Type [] can play the role of the squash, bracket, (-1)-truncation

type constructor, we can take ||σ|| , Lσ inhabited
σ,Type [σ] and we get the introduction

and elimination rules:

Γ ` M : τ

Γ ` Lσ inhabited
σ,Type [M] : Lσ inhabited

σ,Type [τ]
Intro

Γ ` λx : σ. M : σ → τ x 6∈ FV (M ∪ τ)

Γ ` λx : Lσ inhabited
σ,Type [σ]. M : Lσ inhabited

σ,Type [σ]→ τ
Rec · 1

Γ ` λx : σ. M : σ → τ x 6∈ FV (M ∪ τ)

Γ ` Lσ inhabited
σ,Type [M] : Lσ inhabited

σ,Type [τ]
Rec · 2

Γ ` ρ : Lσinhabited
σ,Type [σ]→ Type Γ, x : σ ` N : ρ(Lσinhabited

σ,Type [x])

Γ, x : Lσinhabited
σ,Type [σ] ` N : ρx

Ind
.

F. Alessi et alii LLFP for fast and loose reasoning 12 / 1

Applications of Locks: Generalized Propositions

In order to make sense of partially defined propositions such as
“x 6= 0 ⊃ x−1 6= 0” Martin-Löf’s defines A ⊃ B by

A Prop
A True
B Prop

A ⊃ B Prop

using locks we express this by

A Prop LATrue
A,Prop[B Prop]

A ⊃ B Prop .

Typical ambiguity the intended use of U ∈ U can be expressed using locks
by

LΦ[U∈U] is stratifiable
U,Type [Φ]

F. Alessi et alii LLFP for fast and loose reasoning 13 / 1

Coq-definitional Implementation of LLFP - 1

Our goal is twofold: delegating LLFP ’s metalanguage to Coq’s metalanguage and
reducing inhabitation-search in LLFP to proof-search in Coq

pLPN,σ[ρ]q Πx :pPq(pNq,pσq)pρq

pLPN,σ[M]q λx : pPq(pNq, pσq)pMq

pUPN,σ[M]q pMqx

The last encoding is slightly problematic because it is necessary that a witness
x : pPq(pNq, pσq) be available. This is available in the case of O · Top · Unlock,
but in the case of O · Guarded · Lock one needs to refer to the external bound
variable. However, in practice, it can be “hidden” using user defined tactics in
Coq.
The issue would not have arisen if we would have used

pUPN,σ[M]q plet x = M in xq.

F. Alessi et alii LLFP for fast and loose reasoning 14 / 1

Definitional Implementation of LLFP in Coq- 1

Lock constructor for families

Definition lockF := fun s: Set => fun N: s => fun P: s->Prop =>

fun r: Prop => forall x: P N, r.

Lock-introduction, i.e. (O·Lock) rule

Lemma lock: forall s: Set, forall N: s, forall P: s->Prop,

forall r: Prop, forall M: r, lockF s N P r.

Lock-elimination, i.e. (O·Top·Unlock) rule

Lemma top_unlock: forall s: Set, forall N: s, forall P: s->Prop,

forall r: Prop, forall M: lockF s N P r, forall x: P N, r.

Guarded lock-elimination, i.e. (O·Guarded ·Unlock) rule

Lemma guarded_unlock: forall s: Set, forall S: s, forall P: s->Prop,

forall t: Prop, forall r: t->Prop,

forall M: forall y: t, lockF s S P (r y),

forall N: lockF s S P t, forall x: P S, r (N x).

F. Alessi et alii LLFP for fast and loose reasoning 15 / 1

The Guarded Unlock Tactic

Ltac

Guarded_unlock x :=

match goal with

[|- lockF _ _ _ ?A] =>

unfold lockF;

apply guarded_unlock with (r := (fun w: x => A));

[> intro; apply lock | idtac]

end.

F. Alessi et alii LLFP for fast and loose reasoning 16 / 1

Implementation of CLLFP? in Coq

In a paper [MSCS2018] we introduced the system CLLFP? which allows for the
external tool to synthesize a witness. The LP?x,σ[] becomes a binding operator.
The crucial rules are

Γ, x : σ ` M : τ

Γσ ` LP?x,σ[M] : LP?x,σ[τ]
O·? · Guarded · Lock

Γ ` LP?x,σ[M] : LP?x,σ[τ] P(Γ ` N : σ)

Γ ` M[N/x] : τ [N/x]
O·? · Top · Unlock

The previous encoding can be accommodated naturally as follows:

pLPx,σ[ρ]q Πx :pσqΠy :pP(q(pxq,pσq)pρq

F. Alessi et alii LLFP for fast and loose reasoning 17 / 1

Call-by-value λ-calculus and its LLFP ’s signature Σv

Syntax of untyped λ-calculus M,N ::= x | M N | λx .M
nat: Type 0: nat free: nat→ term

term: Type S: nat→ nat app: term→ term→ term

lam: (term→ term)→ term

Call-by-value equational theory

`CBV M = M
(refl)

`CBV N = M

`CBV M = N
(symm)

`CBV M = N `CBV N = P

`CBV M = P
(trans)

`CBV M = N `CBV M ′ = N ′

`CBV MM ′ = NN ′ (app)

v is a value
`CBV (λx .M)v = M[v/x]

(βv)
`CBV M = N

`CBV λx .M = λx .N
(ξv)

where values are either variables or abstractions

eq: term→ term→ Type

eq_app: ΠM,N,P,Q:term. eq M N→ eq P Q→ eq (app M P) (app N Q)

betav: ΠM:term→ term. ΠN:term. LVal
N,term[eq (app (lam M) N) (M N)]

csiv: ΠM,N:term→ term.

(Πx:term. LVal
x,term[eq (M x) (N x)])→ eq (lam M) (lam N)

F. Alessi et alii LLFP for fast and loose reasoning 18 / 1

Call-by-value λ-calculus in Coq

Syntax and oracle

Parameter term: Set. Parameter lam: (term -> term) -> term.

Parameter free: nat -> term. Parameter app : term -> term -> term.

Definition Val := fun N:term => (exists n, N = (free n))

\/

(exists M, N = (lam M)).

Equational theory (essential rules)

Parameter eq: term -> term -> Prop.

Parameter betav: forall M:term->term, forall N:term,

lockF term N Val (eq (app (lam M) N) (M N)).

Parameter csiv: forall M N:term->term,

(forall x:term, lockF term x Val (eq (M x) (N x)))->

eq (lam M) (lam N).

F. Alessi et alii LLFP for fast and loose reasoning 19 / 1

An example proof

Proof of the equation λx. z ((λy.y) x) = λx. z x via (O·Guarded·Unlock)

z:t ` eq(z, z)
(refl)

x :t, w :eq(app(lam(λy :t. y), x), x) ` eq(app(lam(λy :t. y), x), x)
(Hyp)

z, x :t, w :. . .` eq(app(z, app(lam(λy :t. y), x)), app(z, x))
(eq app)

x :t ` LVal
x,t [eq(app(lam(λy :t. y), x), x)]

(betav)

z:t ` ∀x :t. LVal
x,t [eq(app(z, app(lam(λy :t. y), x)), app(z, x))]

(GuardedUnlock)

z:t ` eq(λx :t. app(z, app(lam(λy :t. y), x)), λx :t. app(z, x))
(csiv)

F. Alessi et alii LLFP for fast and loose reasoning 20 / 1

The Fast and Loose and Parallel Reasoning Paradigms

A historical example in Rhind Papyrus 1650 BC, and Liber Abaci by
Fibonacci 1200 AD: regula falsi for solving linear equations

Lf (a)=A
f (a)=a,Int[M(a) = N] Kf (a) = A

M(Ka) = kN

provided all arithmetical terms are linearand M is homogenous.
A modern example [DHJG POPL’06]: reasoning correctly on possibly
non-terminating programming languages assuming that data are total and
finite;
A more visionary example in Quantum Computing: both in parall execution
and in counterfactual computing, i.e. computing without executing and
truth-without-proof .
Ordinary examples Fitch-Prawitz Set Theory or Typical Ambiguity,
When are checks performed? When are locks removed?
Monads usually do not allow exiting: but all monads have a “morally
correct” inverse.
In the implementation of Fitch-Prawitz Set Theory checks are performed
when elim-rules are applied.
In LLFP checks are implicitly run in parallel.

F. Alessi et alii LLFP for fast and loose reasoning 21 / 1

Branch prediction (BP)

In processor architecture, a branch predictor is a construct that tries to guess
which branch the control will exit, e.g. in an if-then-else, before the result of
the test is actually known, in order to improve the flow in the instruction pipeline.

SAFETY PRINCIPLE: in case of misprediction the execution is discarded
and resumed starting from the correct branch;
MISPREDICTION RECOVERY PROTOCOL

static e.g. tests or jumps are never performed or performed only if produce
backward-jumps;
dynamic i.e. information is collected at runtime, e.g. assume the test is true if
it has be true “most” of the times.

We study formally BP for the Unlimited Register Machine (URM):

s ::= 〈ι 7→rι〉ι∈[0..∞] rι∈N Store
I ::= Z (i) | S(i) | T (i , j) | J(i , j , k) i , j , k∈N Instruction
P ::= (ι 7→Iι)

ι∈[1..m] m∈N Program

whose instructions Zero, Successor, Transfer, Jump have the intended meanings:

Z(i) , 0→ Ri

S(i) , ri + 1→ Ri

T (i, j) , ri → Rj

J(i, j, k) , if ri =rj then execute the k-th instruction else the next one

F. Alessi et alii LLFP for fast and loose reasoning 22 / 1

BP: definitions

Program evaluation

E(P, n, s) =


s if fetch(P, n)=Halt
E(P, n+1, zero(s, i)) if fetch(P, n)=Z(i)
.
E(P, k, s) if fetch(P, n)=J(i , j , k) and s(i)=s(j)
E(P, n+1, s) if fetch(P, n)=J(i , j , k) and s(i) 6=s(j)

Auxiliary functions

fetch(P, n) , if n>length(P) then Halt else In
zero(s, i) , λι∈N. if ι=i then 0 else s(ι)

succ(s, i) , λι∈N. if ι=i then s(ι)+1 else s(ι)

move(s, i , j) , λι∈N. if ι=j then s(i) else s(ι)

LLFP ’s signature for stores and programs

nat: Type 0: nat S: nat→ nat

store: Type zeros: store cs: nat→ store→ store

ins: Type Ht: ins Zr: nat→ ins . . . Jp: nat→ nat→ nat→ ins

pgm: Type void: pgm cp: ins→ pgm→ pgm

F. Alessi et alii LLFP for fast and loose reasoning 23 / 1

BP: semantics

Structured evaluation (essential rules)

fetch(P, n)=Z(i)

〈n, s〉 P 〈n+1, zero(s, i)〉
(eZ)

〈n, s〉 P 〈m, t〉 〈m, t〉 P 〈q, u〉
〈n, s〉 P 〈q, u〉

(trans)

fetch(P, n)=J(i , j , k) s(i)=s(j)

〈n, s〉 P 〈k, s〉
(Jt)

fetch(P, n)=J(i , j , k) s(i) 6=s(j)

〈n, s〉 P 〈n+1, s〉
(Jf)

fetch(P, n)=Halt

〈n, s〉 ⇒P s
(empty)

〈n, s〉 P 〈m, t〉 fetch(P,m)=Halt

〈n, s〉 ⇒P t
(stop)

LLFP ’s signature for evaluation (Jump rules)

T : Type

fetch : pgm→ nat→ ins→ Type

step : prg→ nat→ store→ nat→ store→ Type

sJt : ΠP:pgm. Πn,i,j,k:nat. Πs:store.

fetch P n (J i j k)→ LEq

〈s,i,j〉,T[step P n s k s]

sJf : ΠP:pgm. Πn,i,j,k:nat. Πs:store.

fetch P n (J i j k)→ LNeq

〈s,i,j〉,T[step P n s (S n) s]

F. Alessi et alii LLFP for fast and loose reasoning 24 / 1

BP: formalization in Coq

Syntax and oracle

Definition store: Set := list nat.

Parameter ins: Set. Parameter Ht: ins. ... Definition pgm: Set := list ins.

Inductive T: Set := triple: store -> nat -> nat -> T.

Definition pr1 (x:T): store := match x with triple s i j => s end. ...

Definition s_nth (s:store) (n:nat): nat := nth n s 0.

Definition Eq := fun x:T => s_nth (pr1 x) (pr2 x) =

s_nth (pr1 x) (pr3 x). ...

Semantics (Jt rule)

Parameter step: pgm -> nat -> store -> nat -> store -> Prop.

Parameter sJt: forall P n i j k s, fetch P n = (Jp i j k) ->

lockF T (triple s i j) Eq (step P n s k s). ...

A sample proof

P(1)=J(0, 1, 0)

LEq
〈s,0,1〉,T [〈1, s〉 P 〈0, s〉]

(sJt)
P(0)=Z(0)

〈0, s〉 P 〈1, t〉
(sZ)

LEq
〈s,0,1〉,T [〈1, s〉 P 〈1, t〉]

(sTr)
Eq(〈s, 0, 1〉)

〈1, s〉 P 〈1, t〉
(O·Top)

F. Alessi et alii LLFP for fast and loose reasoning 25 / 1

Adequacy Statements - tentative

All possible executions are adequately modeled in the “soup” of provable
judgements.

How are misprediction recovery protocols rendered?

We need to introduce rules for exiting or escaping from monads:

the standard rule is the Unlock-rule

LEq
<s,i,j>,T [V ,V ′] Eq(< s, i, j >)

V
standard

;

in the never protocol we never use the rule sJt but only sJf . The
Unlock-rule then takes the form

LNeq
<s,i,j>,T [< V , step P n s k s′ >] ¬Neq(< s, i , j >)

step P n s k s
never

;

in the backwards protocol a modified sJt-rule is used which checks first that
the potential jump is a backwards-jump, otherwise the sJf -rule is used.

In the last two examples locked judgements have to record the alternative
which originally was not chosen.

F. Alessi et alii LLFP for fast and loose reasoning 26 / 1

Optimistic concurrency control (OCC)

In information technology, concurrency control ensures that concurrent operations
generate correct results, efficiently.

The optimistic approach, in particular, assumes that multiple transactions can be
frequently completed without interfering with each other:

transactions are allowed to use resources without acquiring locks on them

when a transaction A is completed, it is checked that no other transaction B,
completed after the activation of A, has modified the data that A has used

if the check reveals interference, A is rolled back and restarted sequentially
otherwise A is allowed to commit its modifications, which are made permanent

Therefore, by assuming that concurrent transactions modify resources just locally
before committing, we state that transaction i may perform the following actions:

start(i) , activation (first action of the transaction)

read(i , j) , reading on resource j

write(i , j) , writing to resource j

check(i) , check againts interference (last action): commit vs roll back

F. Alessi et alii LLFP for fast and loose reasoning 27 / 1

OCC: definitions and semantics

Syntax of schedules

T , N Transaction

R , N Resource
A ::= start(i) | check(i) | i∈T Action

read(i , j) | write(i , j) j∈R
S ::= (ι 7→Aι)

ι∈[1..m] m∈N Schedule

Datatypes, forming the state

ctr , stack(A) Activation control (begin and check actions)

seq , T → queue(A) Actions of transactions, in sequential order

usr , T → list(R) Used resources (by transactions)

wrt , R → list(T) Writing transactions (to resources)

Semantics, where M , 〈ctr , seq, usr ,wrt〉 ∈ state and C , N× state

LOpt
〈i,M〉,C [{check(i) :: S ,M} {S , 〈check(i) :: ctr , seq′

i , usr ,wrt〉}]
LItf

〈i,M〉,C [{check(i) :: S ,M} {S ′, 〈remove(start(i), ctr), seq′
i , usr

′
i , delete(i ,wrt)〉}]

F. Alessi et alii LLFP for fast and loose reasoning 28 / 1

OCC: oracle and example

Predicates

Itf(Γ `Σ 〈i ,M〉:C) , ∃k :T ,∃h:R. check(k) >ctr start(i) ∧
h ∈ usr(i) ∧ k ∈ wrt(h)

Opt(Γ `Σ 〈i ,M〉:C) , ∀k :T . ¬(check(k) >ctr start(i)) ∨
check(k) >ctr start(i)⇒
∀h:R. (h ∈ usr(i)⇒ k 6∈ wrt(h))

Example: lost update

Transaction a Transaction b
start(a), read(a, x)

start(b), read(b, x), write(a, x), check(b)
write(a, x), check(a)

It is apparent that check(b) succeeds, whereas check(a) does not, therefore
the transaction a must be rolled back and processed in sequential mode.

F. Alessi et alii LLFP for fast and loose reasoning 29 / 1

Conclusion

We contributed to the development of LLFP
giving a definitional implementation in Coq

exploring and experimenting with the ”fast and loose” paradigm
suggesting extensions of the framework and offering insights into
implementation.

We are working on logical combinations of predicates (conjunctions and
disjunctions) in locks and their handling via user-defined tactics

We intend to explore how to prototype an alternate editor for LLFP using the
MMT UniFormal Framework of F. Rabe

F. Alessi et alii LLFP for fast and loose reasoning 30 / 1

