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Introduction

Functional programming (FP) languages are popular tools to build

systems that manipulate the syntax of programming languages and

logics.

Variable binding is a common denominator of these objects.

A number of libraries exists along with first class extensions, but

only few FP languages natively provide constructs to handle

bindings.

Libs: AlphaLib, Cαml... and Bindlib !

Languages: Beluga, FreshML...
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Introduction: the logical approach

The logic programming community also worked on first-class

binding structures : λProlog, Abella...

Computation is expressed as proof search.

• Bindings are encoded using λ-abstractions and equality is up

to α, β, η conversion (λ-tree syntax

[Miller and Palamidessi, 1999])

• A new binding quantifier, ∇ can be added to the underlying

logic to work with nominals

This allows bindings in data structures to move to the formula

level and to the proof level.
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Introduction: MLTS

Our goal: enrich ML with bindings support in the style of Abella.

We describe a new functional programming language, MLTS,

whose concrete syntax is based on that of OCaml.

Work in progress...
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The substitution case-study

Term substitution :

val subst : term -> var -> term -> term

Such that “subst t x u” is t[x\u].

4



Handmade

A simple way to handle bindings in vanilla OCaml is to use strings

to represent variables:

type tm =

| Var of string

| App of term * term

| Abs of string * term

And then proceed recursively:

let rec subst t x u = match t with

| Var y -> if x = y then u else Var y

| App(m, n) -> App(subst m x u,

subst n x u)

| Abs(y, body) -> ?

5



Cαml (example from the Little Calculist blog)

Cαml, given a type with binders, generates an OCaml module to

manipulate inhabitants of this type.

sort var

type tm =

| Var of atom var

| App of tm * tm

| Abs of < lambda >

type lambda binds var = atom var * inner tm
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Cαml

let rec subst t x u = match t with

| ...

| Abs abs ->

let x’, body = (open_lambda abs) in

Abs(create_lambda (x’, subst body x u))
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MLTS version of subst

type tm =

| App of tm * tm

| Abs of tm => tm

;;

Some inhabitants :

λx . x

λx . (x x)

(λx . x) (λx . x)

Abs(X\ X)

Abs(X\ App(X, X))

App(Abs(X\ X), Abs(X\ X))
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MLTS version of subst

...

let rec subst t x u =

match (x, t) with
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MLTS version of subst

...

let rec subst t x u =

match (x, t) with

| nab X in (X, X) -> u

nab X in (X, X) will only match if x = t = X is a nominal.
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MLTS version of subst

...

let rec subst t x u =

match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

nab X Y in (X, Y) will only match two distinct nominals.
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MLTS version of subst

...

let rec subst t x u =

match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)
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MLTS version of subst

...

let rec subst t x u =

match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x

u)

r : tm => tm

(Y\ r @ Y) : tm => tm

r @ Y : tm

Abs(Y\ r @ Y): tm

In Abs(Y\ subst (r @ Y) x u), the abstraction is opened,

modified and rebuilt without ever freeing the bound variable,

instead, it moved.
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MLTS version of subst

How to perform that substitution : (λy . y x)[x\λz . z ]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))
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Two type systems

• MLTS is designed as a strongly typed functional programming

language and type checking is performed before evaluation.

• But evaluation itself only need a simpler type system : arity

typing due to Martin-Löf [Nordstrom et al., 1990].

Arity types for MLTS are either:

• The primitive arity 0

• An expression of the form 0 → · · · → 0
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MLTS features: =>, backslash and at

The type constructor => is used to declare bindings (of non-zero

arity) in datatypes.

The infix operator \ introduces an abstraction of a nominal over

its scope. Such an expression is applied to its arguments using @,

thus eliminating the abstraction.

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

Example

Y\ ((X\ body) @ Y) denotes the result of instantiating the

abstracted nominal X with the nominal Y in body.
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MLTS features: new and nab

The new X in binding operator provides a scope within

expressions in which a new nominal X is available.

Patterns can contain the nab X in binder: in its scope the symbol

X can match nominals introduced by new and \.
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One more example: beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r ->

new X in beta (subst (r @ X) X n)

| _ -> App(m, n)

end

;;
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One more example: vacuity

let vacp t =

match t with

| Abs(r) ->

new X in

let rec aux term =

match term with

| X -> false

| nab Y in Y -> true

| App(m, n) -> (aux m) && (aux n)

| Abs(r) -> new Y in aux (r @ Y)

in aux (r @ X)

| _ -> false
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Pattern matching

We perform unification modulo α, β0 and η.

β0: (λx .B)y = B[y/x ] provided y is not free in λx .B (or

alternatively (λx .B)x = B

We give ourself the following restrictions:

• Pattern variables can be applied to at most a list of distinct

nominals. (nab X1 X2 in C(r @ X1 X2) -> ...)

• These nominals must be bound in the scope of pattern

variables. (In ∀r nab X1 X2 in C(r @ X1 X2) the scopes of

X1 and X2 are inside the scope of r.)

This is called higher-order pattern unification or Lλ-unification

[Miller and Nadathur, 2012].

Such higher-order unification is decidable and unitary.
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Natural semantics and implementation

Natural semantics for MLTS is fully declarative inside the logic G.

This fragment of the G-logic is implemented in λProlog. We

translate the ocaml-style concrete syntax into the abstract syntax

in λProlog before evaluation.

Given the richness of the G-logic on which is based the natural

semantics, we can prove that nominals do not escape their scope:

S̀∃ V . eval(new X in X) V
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Conclusion & Future work

• This treatment of bindings has a clean semantic inspired by

Abella.

• The interpreter was quite simple to write : ≈140 lines of code

• More examples in the meta-programming area (a compiler ?)

• Statics checks such as pattern matching exhaustivity, use of

distinct pattern variables in pattern application, nominals

escaping their scope, etc.

• Design a ”real” implementation. A compiler ? An extension

to OCaml ? An abstract machine ?

https://trymlts.github.io
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Thank you
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Other vacuous

let vacuous t = match t with

| Abs(X\s) -> true

| _ -> false ;;

match t with Abs(X\s) ≡ ∃s.(λx .s) = t

(Recursion is hidden in the matching procedure)



Examples

The term on the left of the D operator serves as a pattern for

isolating occurrences of nominal constants.

Example

For example, if p is a binary constructor and c1 and c2 are

nominal constants:

λx .x D c1 λx .p x c2 D p c1 c2 λx .λy .p x y D p c1 c2

λx .x 6D p c1 c2 λx .p x c2 6D p c2 c1 λx .λy .p x y 6D p c1 c1

Nominal abstraction of degree (n) 0 is the same as equality

between terms based on λ-conversion.



Concrete syntax typing rules (1/2)

Γ, x : C ` x : C
Γ ` M : A -> B Γ ` N : A

Γ ` (M N) : B

Γ, x : A ` M : B

Γ ` (fun x -> M) : A -> B

Γ, X : A ` M : B open A

Γ ` (new X in M) : B

Γ, X : A ` M : B open A

Γ ` (X \ M) : A => B

Γ ` r : A1 => ... => An => A Γ ` t1 : A1 . . . Γ ` tn : An
Γ ` (r @ t1 ... tn) : A



Concrete syntax typing rules (2/2)

Γ ` term : B Γ ` B : R1 : A . . . Γ ` B : Rn : A
Γ ` match term with R1 | ... | Rn : A

Γ, X : C ` A : R : B open C

Γ ` A : nab X in R : B

Γ ` L : A ` ∆ Γ,∆ ` R : B

Γ ` A : L -> R : B

Γ ` t1 : A1 ` ∆1 . . . Γ ` tn : An ` ∆n

Γ ` C(t1,...,tn) : A ` ∆1, . . . ,∆n
C of type A1*...*An -> A

Γ ` X1 : A1 . . . Γ ` Xn : An open A1 . . . open An

Γ ` (r @ X1 ... Xn) : A ` r : A1 => ... => An => A

Γ ` x : A ` {x : A}
Γ ` p : A ` ∆1 Γ ` q : B ` ∆2

Γ ` (p,q) : A * B ` ∆1,∆2



Natural semantics for the abstract syntax

(G-logic [Gacek, 2009, Gacek et al., 2011]) (1/2)

` val V
` V ⇓ V

` M ⇓ F ` N ⇓ U ` apply F U V

` M@N ⇓ V

` (R U) ⇓ V

` apply (lam R) U V

` (R (fixpt R)) ⇓ V

` (fixpt R) ⇓ V

` C ⇓ tt ` L ⇓ V

` cond C L M ⇓ V

` C ⇓ ff ` M ⇓ V

` cond C L M ⇓ V



Natural semantics for the abstract syntax (2/2)

` ∇x .(E x) ⇓ (V x)

` x\ E x ⇓ x\ V x

` ∇x .(E x) ⇓ V

` new E ⇓ V

` pattern T Rule U ` U ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` (match T Rules) ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` ∃x .pattern T (P x) U

` pattern T (all (x\ P x)) U

` (λz1 . . . λzm.(t =⇒ s)) D (T =⇒ U)

` pattern T (nab z1 . . . nab zm.(t =⇒ s)) U

` λX .(X =⇒ s) D (Y =⇒ U)

` pattern Y (nab X in (X =⇒ s)) U ` U ⇓ V

` match Y with (nab X in (X =⇒ s)) ⇓ V
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