
Property-Based Testing of Abstract Machines
an Experience Report

Alberto Momigliano,
joint work with Francesco Komauli

DI, University of Milan

LFMTP18, Oxford
July 07, 2018

Motivation

I While people fret about program verification in general, I care
about the study of themeta-theory of programming languages

I This semantics engineering addresses meta-correctness of
programming, e.g. (formal) verification of the trustworthiness
of the tools with which we write programs:

I from static analyzers to compilers, parsers, pretty-printers down
to run time systems, see CompCert, seL4, CakeML, VST . . .

I Considerable interest in frameworks supporting the “working”
semanticist in designing such artifacts:

I Ott, Lem, the Language Workbench, K, PLT-Redex. . .

Why bother?

I One shiny example: the definition of SML.

I In the other corner (infamously) PHP:

“There was never any intent to write a programming
language. I have absolutely no idea how to write a
programming language, I just kept adding the next
logical step on the way”. (Rasmus Lerdorf, on
designing PHP)

I In the middle: lengthy prose documents (viz. the Java
Language Specification), whose internal consistency is but a
dream, see the recent existential crisis [SPLASH 16].

Why bother?

I One shiny example: the definition of SML.

I In the other corner (infamously) PHP:

“There was never any intent to write a programming
language. I have absolutely no idea how to write a
programming language, I just kept adding the next
logical step on the way”. (Rasmus Lerdorf, on
designing PHP)

I In the middle: lengthy prose documents (viz. the Java
Language Specification), whose internal consistency is but a
dream, see the recent existential crisis [SPLASH 16].

Meta-theory of PL

I Most of it based on common syntactic proofs:
I type soundness
I (strong) normalization
I correctness of compiler transformations
I non-interference . . .

I Such proofs are quite standard, but notoriously fragile, boring,
“write-only”, and thus often PhD student-powered, when not
left to the reader

I mechanized meta-theory verification: using proof assistants
to ensure with maximal confidence that those theorems hold

Not quite there yet

I Formal verification is lots of hard work (especially if you’re no
Leroy/Appel)

I unhelpful when the theorem I’m trying to prove is, well,
wrong.

I mean, almost right:

I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I We all know that a failed proof attempt is not the best way to
debug those mistakes

I In a sense, verification only worthwhile if we already “know”
the system is correct, not in the design phase!

I That’s why I’m inclined to give testing a try (and I’m in good
company!), in particular property-based testing.

Not quite there yet

I Formal verification is lots of hard work (especially if you’re no
Leroy/Appel)

I unhelpful when the theorem I’m trying to prove is, well,
wrong. I mean, almost right:

I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I We all know that a failed proof attempt is not the best way to
debug those mistakes

I In a sense, verification only worthwhile if we already “know”
the system is correct, not in the design phase!

I That’s why I’m inclined to give testing a try (and I’m in good
company!), in particular property-based testing.

PBT

I A light-weight validation approach merging two well known
ideas:

1. automatic generation of test data, against
2. executable program specifications.

I Brought together in QuickCheck (Claessen & Hughes ICFP
00) for Haskell

I The programmer specifies properties that functions should
satisfy inside in a very simple DSL, akin to Horn logic

I QuickCheck aims to falsify those properties by trying a large
number of randomly generated cases.

QuickCheck’s Hello World! (FsCheck, actually)

let rec rev ls =

match ls with

| [] -> []

| x :: xs -> append (rev xs, [x])

let prop_revRevIsOrig (xs:int list) =

rev (rev xs) = xs;;

do Check.Quick prop_revRevIsOrig ;;

>> Ok, passed 100 tests.

let prop_revIsOrig (xs:int list) =

rev xs = xs

do Check.Quick prop_revIsOrig ;;

>> Falsifiable, after 3 tests (5 shrinks) (StdGen (518275965,...)):

[1; 0]

Not so fast. . . 1/2

I Sparse pre-conditions:

ordered xs ==> ordered (insert x xs)

I Random lists not likely to be ordered . . . Obvious issue of
coverage. QC’s answer: write your own generator

I Writing generators may overwhelm SUT and become a
research project in itself — IFC’s generator consists 1500 lines
of “tricky” Haskell [JFP15]

I When the property in an invariant, you have to duplicate it as
a generator and as a predicate and keep them in sync.

I Do you trust your generators? In Coq’s QC, you can prove your
generators sound and even complete. Not exactly painless.

I We need to implement (and trust) shrinkers, the necessary
evil of random generation, transforming large counterexamples
into smaller ones that can be acted upon.

Not so fast. . . 2/2

Lots of current work on supporting coding or automatic derivation
of (random) generators:

I Needed Narrowing: Classen [JFP15], Fetscher [ESOP15]

I General constraint solving: Focaltest [2010], Target [2015]

I A combination of the two in Luck [POPL17], a

Exhaustive data generation (small scope hypothesis): enumerate
systematically all elements up to a certain bound:

I The granddaddy: Alloy [Jackson 06];

I (Lazy)SmallCheck [Runciman 08], EasyCheck [Fischer 07],
αCheck

I Most of the testing techniques in Isabelle/HOL

PBT for MMT

I PBT is a form of partial “model-checking”:
I tries to refute specs of the SUT
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound

I PBT for MMT means:
I Represent object system in a logical framework.
I Specify properties it should have — you don’t have to invent

them, they’re exactly what you want to prove anyway.
I System searches (exhaustively/randomly) for counterexamples.
I Meanwhile, user can try a direct proof.

PBT for MMT

I PBT is a form of partial “model-checking”:
I tries to refute specs of the SUT
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound

I PBT for MMT means:
I Represent object system in a logical framework.
I Specify properties it should have — you don’t have to invent

them, they’re exactly what you want to prove anyway.
I System searches (exhaustively/randomly) for counterexamples.
I Meanwhile, user can try a direct proof.

Testing and proofs: friends or foes?

I Isn’t Dijkstra going to be very, very mad?

“None of the program in this monograph, needless
to say, has been tested on a machine” [Introduction
to A Discipline of Programming, 1980]

I Isn’t testing the very thing theorem proving want to replace?

I Oh, no: test a conjecture before attempting to prove it and/or
test a subgoal (a lemma) inside a proof

I In fact, PBT is nowadays present in most proof assistants
(Coq, Isabelle/HOL):

The “run your research” game

I Following Robbie Findler and at.’s Run Your Research paper
at POPL12 we want to see if we find faults in (published) PL
models, but leaving the comfort of high-level object languages
and addressing abstract machines and TALs.

I Comparing costs/be¡nefits of random vs exhaustive PBT

I We take on Appel et al.’s CIVmark: a benchmark for
“machine-checked proofs about real compilers”. No binders.

I A suicide mission for counterexample search:
I The paper comes with two formalization, in Twelf and Coq
I Data generation (well typed machine runs) more challenging

than (singe) well-typed terms.

The plumbing of the list-machine

I The list-machine works operates over an abstraction of lists,
where every value is either nil or the cons of two values

value a ::= nil | cons(a1, a2)

I Instructions:

jump l jump to label l
branch-if-nil v l if v = nil then jump to l
fetch-field v 0 v ′ fetch the head of v into v ′

fetch-field v 1 v ′ fetch the tail of v into v ′

cons v0 v1 v ′ make a cons cell in v ′

halt stop executing
ι1; ι2 sequential composition

I Configurations:

program p ::= end | p, ln : ι
store r ::= { } | r [v 7→ a]

Operational semantics

I (r , ι)
p7→ (r ′, ι′) for a fixed program p, in CPS-style. E.g.:

r(v) = cons(a0, a1) r [v ′ := a0] = r ′

(r , (fetch-field v 0 v ′; ι))
p7→ (r ′, ι)

step-fetch-field-0

r(v) = cons(a0, a1) r [v ′ := a1] = r ′

(r , (fetch-field v 1 v ′; ι))
p7→ (r ′, ι)

step-fetch-field-1

r(v0) = a0 r(v1) = a1 r [v ′ := cons(a0, a1)] = r ′

(r , (cons v0 v1 v ′; ι))
p7→ (r ′, ι)

step-cons

I Computations chained the Kleene closure of the small-step
relation, with halt for the end of a program execution.

I A program p runs in the Kleene closure, starting from
instruction at p(l0) with an initial store v0 7→ nil, until a halt

Static semantics

I Each variable has list type then refined to empty and
nonempty lists

type τ ::= nil | list τ | listcons τ

I The type system includes therefore the expected subtyping
relation and a notion of least common super-type

I A program typing Π is a list of labeled environments
representing the types of the variables when entering a block

I Type-checking follows the structure of a program as a labeled
sequence of blocks.

I At the bottom, instruction typing Π `instr Γ{ι}Γ′ where an

instruction transforms a Γ into post-condition Γ′ under the
fixed the program typing Π.

Γ(v) = listcons τ Γ[v ′ := τ] = Γ′

Π `instr Γ{fetch-field v 0 v ′}Γ′ check-instr-fetch-0

Γ(v) = listcons τ Γ[v ′ := list τ] = Γ

Π `instr Γ{fetch-field v 0 v ′}Γ′ check-instr-fetch-1

Testing

Question What are the properties of interest?

Answer The theorem the calculus satisfies:

p : Π Π `instr Γ{ι}Γ′ r : Γ

step-or-halt(p, r , ι)
progress

p : Π `env Γ r : Γ Π; Γ `block ι (r , ι)
p7→ (r ′, ι′)

∃Γ′. `env Γ′ ∧ r ′ : Γ′ ∧ Π; Γ′ `block ι′
preservation

More questions

I What about intermediate lemmas? Do they catch more bugs?

I What are the trade off between random and exhaustive
generation on low-level code?

LP implementation: αCheck 1/2

I αCheck is a PBT tool on top of αProlog, a variant of Prolog
with nominal abstract syntax.

I Equality coincides with ≡α, # means “not free in”, 〈x〉M is
an M with x bound, Nis the Pitts-Gabbay quantifier.

I Use nominal Horn formulas to write specs and checks

I A check N~a∀~X .A1 ∧ · · · ∧ An ⊃ A is a bounded query:
?− N~a. ∃~X . A1 ∧ · · · ∧ An ∧ gen(X1) ∧ · · · ∧ gen(Xn) ∧ not(A)

I Search via iterative-deepening for complete (up to the bound)
proof trees of all hypotheses

I Instantiate all remaining variables X1 . . .Xn occurring in A with
exhaustive generator predicates for all base types,
automatically provided by the tool.

I Then, see if conclusion fails using negation-as-failure.

I Can also use negation elimination (skip for today)

LP implementation: αCheck, 2/2

I The encoding is pure many-sorted Prolog: we not use the
nominal machinery — not even for labels, as they have
identity

I The check for progress is immediate: no set-up, the tool will
add grounding generators for P,R,I:

#check "progress" 10:

check_program(P, Pi),

check_block(Pi, G, I),

store_has_type(R, G) => step_or_halt(P, R, I).

I Preservation needs some work: the conclusion is existential
∃Γ′. `env Γ′ ∧ r’: Γ′ ∧ Π; Γ′ `block ι′ and we need
custom made generator to ground Γ′

Functional implementation: FsCheck

I We ported the machine to F# (adapting the Coq code, easy)
and checked with FsCheck, its porting of QuickCheck, with
automatic derivation of generators from algebraic types.

I Those are (as expected) useless: top level checks had zero
coverage: preconditions too hard for uniform distributions;

I We had to spend a lot of effort to produce well-typed
programs, while having no type-inference whatsoever;

I for progress , this means generate simultaneously a program p,
a program typing pi that type-checks with p, a store r

compatible with a type environment g, a label l that belongs
to program p and the instruction i associated to label l.

I Wait, there is more: writing shrinkers here is non-trivial again
, as we need to shrink modulo well-typing.

Proof of the pudding: validating the list-machine

I The preservation property fails! Here’s the offending program:

(l0 : cons(v0, v0, v0); jump l1);
(l1 : fetch-field(v0, 0, v0); jump l2);
(l2; halt)

I There was a major mistake in the journal paper w.r.t.
assigning types to values:

???
cons(a0, a1) : listcons τ

I Mutation Analysis:
1. change a program inserting a single fault
2. see if your testing method detects it (killing a mutant)
3. it’s as good at the killing ratio

I We adopted idea from mutation testing in Prolog to insert
mutations such as:

Γ(v) = listcons τ Γ[v ′ := ��HHlist τ] = Γ′

Π `instr Γ{fetch-field v 1 v ′}Γ′ check-instr-fetch*

Proof of the pudding: validating the list-machine

I The preservation property fails! Here’s the offending program:

(l0 : cons(v0, v0, v0); jump l1);
(l1 : fetch-field(v0, 0, v0); jump l2);
(l2; halt)

I There was a major mistake in the journal paper w.r.t.
assigning types to values:

???
cons(a0, a1) : listcons τ

I Mutation Analysis:
1. change a program inserting a single fault
2. see if your testing method detects it (killing a mutant)
3. it’s as good at the killing ratio

I We adopted idea from mutation testing in Prolog to insert
mutations such as:

Γ(v) = listcons τ Γ[v ′ := ��HHlist τ] = Γ′

Π `instr Γ{fetch-field v 1 v ′}Γ′ check-instr-fetch*

Mutation analysis: αCheck vs FsCheck

Theorems Lemmas Auxiliary Checks Unit Tests
0

5

10 9

2 2

77

1 1

7

K
ill

ed
M

u
ta

n
ts

αCheck FsCheck

I # of mutants killed by each tool

I “Theorems” means type soundness, “lemmas” are
intermediate (typically non-inductive) results, “auxiliary” are
even lower checks coming from Twelf.

I “Unit tests” are just queries adapted from PLT-Redex

αCheck and top-level Theorems comes ahead, but we really need
automatic mutation testing to be more confident.

Conclusions

I PBT is a great choice for meta-theory model checking. to
spec’n’check on a regular basis

I Validating low-level languages is more challenging, but we can
handle with the tools we have and some additional work.

I Checking specifications with αCheck is immediate

I Bare-to-the-bone QuickCheck is a lot of work to setup.
I W.r.t. costs/benefits, exhaustive generation, even in our naive

way, comes ahead over the random approach . . .
I but we need automatic mutation testing to confirm this

Future work: other PBT tools

I We know very well that FsCheck and αCheck are the extremes
of PBT tools and we really should run this benchmark with
others that have support for custom generators

I Since the benchmark has no binders, the are many choices:
I the new QuickChick, with automatically generated generators
I Luck — but you still have to write gens and it’s slow
I Bulwhahn’s smart generators in Isabelle/HOL, less likely

Nitpick

Future work: αCheck

I αCheck works surprisingly well, given the naivete of its
implementation: basically an iterative deepening modification
of the original OCaml interpreter for αProlog

I But experiments with other abstract machines (IFC) reminds
us of how naive we are w.r.t. the combinatorial explosion

I Change the hard-wired notion of bound (# of clauses used)
and how it is distributed over subgoals:

I Take ideas from Tor

I Bring in some random-ness by doing random backchaining:
flip a coin instead of doing chronological backtracking

I Prune the search space by not generating terms that exercise
“equivalent” part of the spec

Future work: going sub-structural

I It’s folklore that linear logical framework are well suited to
encode object logic with imperative features, e.g. Pfenning
and Cervesato’s encoding of MLR in LLF;

I Data structures for heaps, stores. . . are replaced by linear,
affine, etc predicates

I This seems promising for exhaustive PBT, where every
constructor counts

I Work in progress: linear version of the list-machine benchmark
via the two level approach (in λProlog)

I Sub-structural PBT can bring some form of validation to
frameworks such as Celf, whose meta-theory is not there yet

I Meta-interpreters not viable in the long run:
I give the αCheck treatment to languages such as LolliMon
I use program specialization to do amalgamation

Thanks for listening and have a good lunch!

