
Computation-as-deduction in Abella: work in

progress

Kaustuv Chaudhuri, Ulysse Gérard and Dale Miller

LFMTP, July 7, 2018

Inria Saclay

Palaiseau France

Introduction

Abella is an interactive theorem prover in which relations, and not

functions, are defined by (co)induction.

It has rather limited forms of automation.

Recent work on focused proof systems for the logic underlying

Abella allows us to propose various extensions.

1

Notions of G-logic and focusing

The G-logic in Abella [Baelde et al., 2014]

An extension of intuitionistic first-order logic with

• Higher-order λ-terms with αβη-equivalence

• Inductive and coinductive fixed point definitions

• Nominals, nominal abstraction and generic (∇) quantification.

2

The G-logic in Abella [Baelde et al., 2014]

G’s terms are well-typed terms of Church’s simple theory of types,

a given type signature declares:

• basic types (keyword Kind)

• constants which are constructors for these basic types (Type).

Kind bool type.

Type tt , ff bool.

Kind nat type.

Type z nat.

Type s nat → nat.

3

The G-logic in Abella

Two ways to build atomic formulas:

• With Type declarations of target type prop

• Using inductively or coinductively defined fixed points:

Define is_nat : nat → prop by

is_nat z;

is_nat (s X) := is_nat X.

4

The G-logic in Abella

Define plus : nat → nat → nat → prop by

plus z X X ;

plus (s X) Y (s Z) := plus X Y Z.

Theorem plus_z2 : forall X, is_nat X → plus X z X.

Proved by induction on the first antecedent of the chain of

implications : is_nat X.

5

Focusing

Organize search for proofs in an alternation of two phases :

• Invertible (asynchronous) : invertible rules, can be applied in

any order (intros, split and case tactics)

• Synchronous : other rules, require choices from the user to

progress (unfold, left/right, witness, instantiating

variables or inventing and using lemmas)

6

Focusing

Invertible phases are functionally determined by their conclusion.

A definition can be fully discharged in one invertible phase if :

• It appears as an hypothesis and is made of positive

connectives (=, ∧ , ∨ , false, and exists)

• Or it appears as a goal and is made of negative connectives

(∧ , true, →, and forall)

7

1st proposal: Compute and suspend

Compute

The compute tactic performs unfolding and subsequent

asynchronous steps for assumptions involving fully positive

definition predicates.

forall X, plus (s z) (s z) X → X = s (s z)

intros.

compute H1.

search.

============================

forall X, plus (s z) (s z) X

→ X = s (s z)

Variables: X

H1 : plus (s z) (s z) X

============================

X = s (s z)

============================

s (s z) = s (s z)

Proof completed.

8

Compute can branch...

The compute tactic can lead to multiple subgoals: predicates.

forall X Y, plus X Y (s (s z)) → something X Y

intros.

compute H1.

Variables: X Y

H1 : plus X Y (s (s z))

============================

something X Y

Subgoal 1

============================

something z s (s z)

Subgoal 2 is:

something (s z) (s z)

Subgoal 3 is:

something (s (s z)) z
9

Compute can loop...

Imagine we have the following hypothesis:

H1 : is_nat (s (s X))

H1 cannot be eagerly solved:

 is_nat X > X = z

∨
X = (s X1)

is_nat (s X1) is_nat X1 > X1 = z

∨
...

We need a way to prevent unproductive unfoldings.

10

... Suspend

New Suspend declarations to make Abella stop the asynchronous

phase prematurely.

Suspend nat X on X.

means ”(nat X) should not be unfolded if X is a variable”

nat (s (s X)) → nat X

Suspend plus X Y _ on X, Y.

11

2nd proposal: Deterministic

computation

The polarity ambiguity of singleton

If p is a singleton (that is a monadic predicate that holds for

exactly one argument) then:

forall x, p x → Q x ≡ exists x, p x ∧ Q x

In Abella, a definition for singleton would be:

Define singleton : (A → prop) → prop by

singleton P :=

(exists X, P X)

∧ (forall X Y, P X → P Y → X = Y).

12

The polarity ambiguity of singleton

We admit the definition singleton to Abella.

Trying to prove exists x, p x ∧ Q x , if singleton p holds

then the problem of guessing a witness term t becomes:

• Transforming the goal exists x, p x ∧ Q x

into forall x, p x → Q x

• Introducing the variable and its hypothesis (intros)

• Using compute on that hypothesis

It allows use to switch between to paradigms :

Guess and check −→ Compute

13

Singleton and functions

Singleton actually arise whenever a relation is actually a function:

Theorem plus_funct:

forall X Y, is_nat X → is_nat Y → singleton (plus X Y).

This theorem is an ordinary Abella theorem that can be readily

proved by induction on (is_nat X).

14

Witness compute

When the goal has the form:

==

exists X, P X ∧ Q X

witness compute will

1. Try to prove (singleton P)

2. Switch ∃ and ∀
==

forall X, P X → Q X

3. Use intros :

H1 : P X (with X an eigenvariable)

==

Q X

4. Use compute H1 to actually compute the witness
15

Apply compute

Dually, whenever we have a hypothesis of the form:

H : forall X, P X → Q X

then invocating apply compute H has the effect of first trying to

prove (singleton P) and then continuing with the new

hypotheses where X is an eigenvariable:

H1 : P X

H : Q X

following up with compute H1.

16

Conclusion and perspectives

This small extension to Abella is orthogonal to it’s core. No

change was made to the underlying logic:

• compute / Suspend

• singleton / witness compute / apply compute

These proposals could be generalized :

• Default suspend declarations ?

• The notion of singleton could be relaxed to a notion of

singleton up to equivalence

• Deal with data defined by higher-order type signatures.

17

Thank you.

18

Baelde, D. (2012).

Least and greatest fixed points in linear logic.

ACM Trans. on Computational Logic, 13(1).

Baelde, D., Chaudhuri, K., Gacek, A., Miller, D., Nadathur,

G., Tiu, A., and Wang, Y. (2014).

Abella: A system for reasoning about relational

specifications.

Journal of Formalized Reasoning, 7(2).

Gérard, U. and Miller, D. (2017).

Separating functional computation from relations.

In Goranko, V. and Dam, M., editors, 26th EACSL Annual

Conference on Computer Science Logic (CSL 2017),

volume 82 of LIPIcs, pages 23:1–23:17.

	Notions of G-logic and focusing
	1st proposal: Compute and suspend
	2nd proposal: Deterministic computation
	Appendix

