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Plan of the talk

 Proof functional logics vs. Truth functional logics
» The power of intersection and union types a la Curry
 Preludio. The Delta-calculus: (] and | types a la Church

Core 1 Raising the Delta-calculus to the Delta-framework: an
implementation of the A-calculus with dependent-types and
relevant arrow-types

Core 2 Encoding of the Delta-calculus in the Delta-framework
« About the current implementation of the Delta-framework

* Related and future works
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Proof functional connectives vs. (usual) Truth
functional connectives

« Intuitionistic logic states that proof should correspond to an object
giving all the components of the proof (BHK interpretation): proofs
can be encoded in typed A-calculus

 Pottinger and Lopez-Escobar in the ’80 introduced the notion of
proof-functional connectives ie. operators allow reasoning about
the structure of logical proofs

« Logical proofs are raised to the status of first-class objects
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Intersection and Union are Proof-functional

» An intersection type/formula N is a proof-functional connective
totally different from a cartesian product x

e ... lo assert ¢ N 1) Is to assert that one has a reason (a derivation)
for asserting ¢ which is also a reason (a derivation) for asserting

« Intersection is a “polymorphic" construction, that is, the same
evidence can be used as a proof for different sentences
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Intersection and Union are Proof-functional

» An intersection type/formula N is a proof-functional connective
totally different from a cartesian product x

e ... lo assert ¢ N 1) Is to assert that one has a reason (a derivation)
for asserting ¢ which is also a reason (a derivation) for asserting 1

« Intersection is a “polymorphic" construction, that is, the same
evidence can be used as a proof for different sentences

« An union type/formula U is a proof-functional connective totally
different from disjoint union v

e ... to assert ¢ by disjunction on ¢ U is to assert £ using the same
reason (derivation) in both the cases of the disjunction ¢ or 1

« Union types is a polymorphic construction, that is, a proof for ¢ is
also a proof for ¢ U ¢

» Union types represent also a form of “uncertain” construction, that
is, a proof for ¢ U ¢ “could" be either a proof for ¢ or a proof for ¢
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Intersection and Union Types () and | ))

« Intersection types [Barendregt-Coppo-Dezani,JSL82] are also
referred as ad hoc polymorphism

¢ Intersection types characterize the set of strongly normalizable
A-terms

 Girard’s parametric polymorphism (System F) is equivalent to
ad hoc polymorphism

Va.o 2 ﬂ oj

i=1...00
» Union types [McQueen-Plotkin-Sehti] are considered as a dual of

intersection types

« Intersection and union types can be used to express conjunctive
and disjunctive properties on programs
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Type assignment system for () and |

X:oe€B BFM:oc o<l
Brx.o (/&) Brm.r S
B, xot-M:rt

(-)I) B-M:0—171 Bl_NO'(%E)

BEMXM:o—rT BFMN:r
B-M:0 BFM:r BM:o1nox i=1,2 .
BrM:onr () BFM: o, (NE)
B, xocEM:p
o B.xtHM: BEN:ocUT
B-M:o; i 1’2(U/,') P (UE)
BFM:oiUos B+ M{N/x}:p

Suitable subtyping relation for arrow, intersection, and union
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Ex: Type assignment judgments with () and | J

« For intersection types: polymorphic identity and self-application
FAx.x:(c—=o)N(r—7T)

FMXxxx:((c—=71)nNo)—>T1
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Ex: Type assignment judgments with () and | J

« For intersection types: polymorphic identity and self-application
FAx.x:(c—=o)N(r—7T)

FMXxxx:((c—=71)nNo)—>T1

« For intersection and union types: the Forsythe code by Pierce:

Test 2 if bthen1else —1: PosU Neg
Is 0 : (Neg— F)n(Zero— T)N(Pos— F)
(Is_0Test) : F

Without union types the best information we can get for (Is_0 Test)
is a Boolean type
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Why a typed calculus with () and | ] is so
complicated?

« Intersection and union types were defined as type assignment
systems (for pure \-terms)

« Very elegant presentation but undecidability of type checking

* Many attempts of finding decidable and typed A-calculi with
intersection and union types preserving all the good properties of
type assignment

?1 The usual approach (adding types to binders) is problematic for

X0k Xo (Var) X:TH X7 (Var)
(—1) —1)
FAX:o.X:0— 0o AT XT =T (N1
FAX:?7??7.x:(0c = o) N (T — 1)

?2 M{N/x} in (UE) would make the system non syntax directed
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Our solution: use Curry-Howard isomorphism
» Based on Dougherty, Liquori, Ronchi, Stolze papers (see biblio)

e Curry-Howard isomorphism is usually used for encoding a logic
into a corresponding typed A-calculus. For example:

Ax:¢.M : ¢ — 1) encodes a derivation tree D for ¢ D ¢
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Our solution: use Curry-Howard isomorphism
» Based on Dougherty, Liquori, Ronchi, Stolze papers (see biblio)

e Curry-Howard isomorphism is usually used for encoding a logic
into a corresponding typed A-calculus. For example:

Ax:¢.M : ¢ — 1) encodes a derivation tree D for ¢ D ¢

Our solution: we encode a type assignment derivation into our
corresponding typed “A-term”

For example the A-term
(Mox, Ax:T.x)y oftype (c—=o)N(t—=71)
encodes a derivation tree D for

XokEX:o XTEX:T
FAXX:0—0 FMXXX:T—T
XX (o =o)N (T —71)

We call \x.x the essence of A
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Syntax of the A-calculus

A-terms and types are defined as follows:

o = ¢|lo—o|lonNo|loUo
A = x| Mo A|AA|(AA) | [A,A] ]
pry A | pro A linT A |in A

o arrow, intersection and union types
A typed A-calculus enriched with ...
(A A) strong pair
(A, A] strong sum
pr; projections for strong product
iny injections for strong sum
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Reconstructing the essence M from a A-term

¢ Fix the relation between pure \-terms and typed A-terms
» Consider the following “erasing” partial function 1—

X =2 X
X0 A0 2 AXQA
W1 A 2 WA NAR
priAl = A
N AL =AY
WAL, Do)l 2 A if 110 =140

UAX:0. A, AX:T.Ap] Ag WAR{ASY X} if 1A =142

.
-
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Reconstructing the essence M from a A-term

¢ Fix the relation between pure \-terms and typed A-terms
» Consider the following “erasing” partial function 1—

X 2 X
X0 A0 2 AXQA
W1 A 2 WA NAR
priAl = A
N AL =AY
WAL, Do)l 2 A if 110 =140

UAX:0. A, AX:T.Ap] Ag WAR{ASY X} if 1A =142

- E le:
xampie Pri (AX:o. X , AT XN = AX.X

UAy:mind y  Ayoinfylxt = x

-
-
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Semantics and properties of the A-calculus

¢ Reduction in the A-calculus is the usual g-reduction plus
pry (A1, A2) —pr,  Ag [A1,Az]in] Az —in, A1z
pro (A1, A2) —pr, A2 [A1,Az]in] Az —in,  AqAg

» Type system (rules for intersection and union)
Ao MXxok Ay:p A =142
MN-As 7 AN =1A0 MxrthHEAs:p TEFAz:0UT
N (Ay,0z):0nNT (0f) e Ao A, X7 02] Ag : p

(VE)

« Judgments fully encode pure type assignment derivations D i.e.
BFA:o iff D:B-M:o
» The following properties can be proved: Church-Rosser, subject

reduction for parallel reduction, unicity of typing, decidability of type
checking and type reconstruction
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core 1 Why a proof-functional logical framework?

« Intuitionistic logic has realizers, but we do not reason about these
realizers

 Proof-functional logic allows us to define constraints on the shape
of the realizers

« It could give us a better understanding of structures of proofs

(theoretical point of view), and a sharper encoding of proofs
(practical point of view)

I &Z’Z&a/— Stolze, Liquori, Honsell and Scagnetto — To nework with Intersection and Union Types




Stratified syntax of the A-framework

Kinds K := Type|Nx:c.K asinLF

Families o,7 == a|MNxwo7|cA| asinLF
MNx:o.1 | relevant product
onNT]| intersection
ourT union

Objects A = c|x|Xx0oA|AA| asinlLF
AXx:o.A | relevant A
(AL, A) | pairs for intersection
[A,A] pairs for union
priA | pry A | projections
in] A |ing A injections
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Reduction rules of the A-framework
Standard S-reduction
()\XZO’.A1)A2 —8 A1{A2/X}
()\rXZO'.A1)A2 —8 A1{A2/X}
Projection rules
pry (A1,A2) —pr,  Ag
pra (Aq, Az) —pr, A2
Injection rules
[A1 ,Ag] inﬁ’ Aj —iny Ay Aj

[A1 ,Ag] in‘z’ A3 —in, YAV A3
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Typing Judgments of the A-framework

Y sig

[ Fx

-
-
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Essence function (now it depends on [ and %)

Q%

x5

Z)\XZO'.AZ)r:

W X0 A

WAy, AL

[AX:0. A1, Ax:T.Ag] Azl
(NI

pr; Aty

in? AL

WA AR
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> e 1>

1>

1>

C
X
AX AN
MDA if L7 = x
A if AT = 1000
WA /xy i iAE = 1A%
WA if A1y = 1000
WA
WA

ZAzZ; if Tks Ay :Nx:o7
{ AN A otherwise
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Q? Why (1A =1A and not 1At =310 ?

We could try to replace this condition by 1A =3 1A

However, for any pure A-term, we can find a corresponding
well-typed A-term

« For instance, in the signature
Y £0:Type, ¢i:(0 — o) =" 0,000 =" (0 —= o)

the A-term
(Ax:o.(c2 x) x)(c1 (Ax:0.(C2 X) X))

has type ¢ and its essence is
(Ax.x x)(Ax.x x)

» As a consequence, 3-equality of essences is undecidable
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Valid signatures, contexts, and kinds

Valid Signatures
_ (wr) Ysig Fr K a.¢ dom(X)
(w:Type) sig ¥, aK sig
Y sig Fxo:Type c¢dom(X)
: (cX)
Y, c:o sig

(K%)

Valid Contexts

Y sig Fs T Tkso:Type x ¢ dom(lN)
F () (e Fs T, X0 ()
Valid Kinds
Fo T M xobs K
iy Type (7Pe) Fry xok ()

.
.
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Valid families

Fs I aKeX

Frya Kk (cons)

I x:obs 7:Type

I x:obts 7:Type

r

5 MNx:o.7: Type (nf) Ity N'x:o.r : Type ()

lso:Mxr.K T AT leso:N'xr. K TEy AT
Ny oA K{A/x} (NE) MNsoA:K{A/x} (N"E)
My o:Type T ks 7:Type (1) My o:Type T ks 7:Type (L)

MNks onT:Type s oUT: Type
rl—):O'ZI‘G I’I—ng /GIKQ
F |—): g . K2 (Conv)

.
.
. &Z’Z&a/— Stolze, Liquori, Honsell and Scagnetto — Toward

amework with Intersection and Union Types




Valid objects (I)

Fs T coeXx Fs I Xxoel
“Trrcio  (Consh Fexo (V4
MNxobs AT () My Ay :Mxior Ths Ao o (NE)
s Ax:0.A : Nx:or Mes Ay A 7{Ao/x}
Mxobs At A% = M'x:0. :
,X.0y T Aly X(n’l) MNes Ay NMxior Ths Ao O'(I_IrE)

Iy Nx:.o.A : 'x:o.1 (AN AQZT{AZ/X}
MlM-sA:o0 Tks7:Type o=

i
TFsA:r (Conv)

Liquori, Honsell and Scagnetto — Towards ogical Framework with Intersection and Union Types



Valid objects (ll)

Tk Ar:o Ths D7 1ANE = 1028

/
r|—):<A1,A2>IUﬂT (ﬂ)
FrEs A:onr lFs A:onT
FFspriA:o (NE)) MEsproAc T (NEr)

Ny Ao ThxoUT: Type
MsinfA:ocUT

MlEs A:r Tz oUT: Type
Msing A:oUr

(UI/)

(Ul

Ms Ay Oyiop{ing y/x} A0 = 1005
MNes Ag:Ny:mp{ing y/x} ThksAz:oUT
[y [A1 ,Az] Az : p{As/X}

(VE)

.
.
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Alternative definition for (UE)

Higher-order unification is undecidable, so we don’t know how to infer
the type p in the rule (UE).

My A Ny:op{in] y/x} A0S = 18005
Mt Ao Ny:rp{ing y/x} ThsAz:oUT
My [A1, D2] Ag : p{Ag/Xx}

(VE)
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Alternative definition for (UE)

Higher-order unification is undecidable, so we don’t know how to infer
the type p in the rule (UE).

My A Ny:op{in] y/x} A0S = 18005
Mt Ao Ny:rp{ing y/x} ThsAz:oUT
My [A1, D2] Ag : p{Ag/Xx}

(VE)

[Fy Ag:oUT

Ms Ay Ny:op(in]y) 400 =180

Mty Ao :Ny:rp(ingy) Ths p:Ny:(cUT).Type
s [A1,Ag], Az : pAg

(U E)implemented

In the implementation, we ask the user to explicitly give p (similarly to
the return keyword in the Coq match operator)
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Exemple: dependent auto-application in the
A-framework

Let X £ o:Type, 7:0 — Type

x:(Ny:ory)Nobs x:(Ny:cry)No x:(My.ory)Nots x: (Ny:ory)No
x:(Ny:ory)Nokspryx:Ny.oTy x:(Ny:ory)NoksproXx:o
x:(My:o.1y)No ks (pry x) (prs X) : 7 (pry X)
Fs Ax:(My:o.7y) No.(pry x) (pro x) : Nx:(MNy:o.7 y) No.7 (pra X)
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Core 2

Encoding examples in LF vs. the A-framework
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Pure LF encoding of the A-calculus

« Because of the expressivity of the Edinburgh LF, encoding the
A-calculus is possible

« We have to face up the encoding of a proof-functional logic

¢ In particular, the encoding will face up to equality of two essence of
A-terms (see 1A = 11A)

« Because of this, encoding proof-functional logics is not an easy
task

e Important. Thanks to isomorphism between A-terms and the type
assignment systems derivations, the encoding represent also one
encoding (the first?) of the intersection and union type assignment
systems
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LF encoding of the A-calculus (spot 1)

o : Type

cC, : 030—0
Ch : 0—50—0
CL : 0—>0—0

obj : o— Type

=, : [st:0.0bjs — objt — Type

r— : nMs:olM:objs.=, sSsMM

s : MNsto.NM:objs.MNN:objt. =, StMN —=, tsNM

. : Nstr.o.NMM:0bjs.MNN:objt.NO:0bjr. =, sStMN —
=0 trNO—=,srMO
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LF encoding of the A-calculus (spot 2)

Cspair
CPH
Cpr2

C—spair

Cpr,

C=pr2

Mst.o.NNMM:objs.NMN:objt. =, sStMN — obj(cn st)
Mst:0.NM:obj(c~st).objs
Mst.o.NM:obj(c~st).objt

MNst:0.NMMM:objs.NN:objt.NZ: =, st MN.
=0 (CnSt)S(Cspair SETMNZ) M

Mst:0.NM:obj(c~st).=o (chst)sM(cy, stM)
Mst:0.NM:obj(cnst).=o (crst)tM(cy, st M)
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Full Coq encoding of the A-calculus (see paper)

o: Type
00— 0
00— 0
00— 0
j:o0 — Type
:MNs t:0.0bjs — objt — Type
:Ms:0.NM:objs. =g ssMM
:Mst:0.NMM:obj s.NMN:objt. =g StMN — =g tsNM
:Nstro.NM:obj s.NN:objt.NO:0bjr. =g StMN — =g trNO — =9 sSrMO
:Msto.(objs — objt) — obj(c— st)
:MNst:0. obj(c— st) — objs — objt
ir : Ms t:0.NMM:obj s.TIN:objt. =g stMN — obj(cn st)
:MNs t.0.NMM:obj (cnst).objs
:Ms t:0.MM:obj (cn st).obj t
:Ms t:0.MM:0bj s.obj (c st)
:Mst.0.MM:obj t.obj (cy st)
:Mstr:0.NX:0bj (c— sr).NY:0bj(c— tr).obj(cy st) — =¢ (c— sr)(c— tr)XY — objr
:Msts’ t':0.NMM:0bj s — obj t.NN:obj s’ — objt’.
(I'Ix:objs.l'ly:nbjs’. =0 ss' xy = =0 tt/ (Mx) (Ny)) —
=0 (cﬁ st)(c— s’ t )(cabster)(Cal;sts t' N)
C—app : Nsts’ t':0.NM:0bj (cﬁ s t).MN:obj s.NM’ obj(cﬁ s’ t').NN":obj s’ .
=0 (6 st)(c— s 'YMM — =0 ss' NN — =o tt'(capp StMN) (capp s’ t' M" N')
C—spair :Mst:0.MM:0obj s.NMN:obj t.NZ: =g stMN. =¢ (cn st)s(cspa/-, StMNZ)M
C=pry :Mst.0.MM:0bj (cn st). =0 (cn st)sM(Cpr1 stM)
C=pry :Mst:o.MM:0bj (cn st). =o (cn st) tM(Dp,'2 stM)
Cing :Msto.NM:objs. =o (cu st)s(Gy, sStM)M
C:inz :Nsto.NM:objt. =0 (cu st)t(cn, StM)M
C—gsum : Nstr:0.M A:obj (¢ sr).MB:obj (c_s tr).NC:0bj (cy st).
NZ: =¢ (c— sr)(c— tr)AB.Mx:objs.
=0 s(cust)xC —=p rr(cappsrAx)(cssumstrABCZ)

Stolze, Liquori, Honsell and Scagnetto — Toward ogica amework with Intersection and Union Types




The A-calculus in the A-frameworK (in one slide)

o

obj
Cabst
Csabst
Capp

Csapp

Type €,C5,,Cn,CL:0—0—0
o — Type

Mst.o.(obj s — objt) =, 0bj(c, st)
Mst.o.(obj s —, obj t) —, obj(c, st)
Mst.o0.0bj(c_, st) —,objs— objt
Mst.o.0bj(c, st) —, 0bj s —, obj t
Mst.o.obj(chst) —,(objsnobjt)
Mst.o.(objsuobjt) —, obj(c, st)
Msto.(objsnobjt) —, obj(ch st)
Mst.o.0bj(cy st) =, (objsUobjt)
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Ex 1: encoding polymorphic identity in the
A-framework

XobX:o XTHEX:T
FMXX: 020 FXX:T—>T
FAXX:(c—=o)n(r—71)

This derivation is faithfully encoded by the A-term
(AX:0.X, AXx:T.X)
and a shallow and compact encoding is
Cspair (C—s 0 0) (C, T T) (Capst 0 0 (AX:0bj 0.X)) , Capst T T (AX:0bj T.X))
Note that a deep encoding in pure LF would be

Cspair (C— 0 0) (€ 7 T) (Capst 0 0 (AX:0b] 0.X)) (Capst T T (AX:0bj T.X))
(Coapst 0 o 7T (AX:0bf 0.X) (AX:0bj 7.X) (AX:0bj 0. \y:0bj T.A\Z: =5 0T X Y).2Z))
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Ex 2: encoding commutativity of union in the
A-framework

XoUT,yoky:o xXoJuT,ytky:T
XoUT,yoky:7Uo XoUT,yTkEYy:7U0 XoUTkEX:0oUT
XoUTkXx:17Uo XU= X

FAXxx:(cUT)—="(tUo)
This derivation is faithfully encoded by the A-term
N x:oUr.[\y:o.ing y, Ay:7.in{ y] x
and a shallow compact encoding in the A-framework is
Csavst (CuoT)(cuTo) (A x:0bj(c,oT).

[\y:0bj a.C, (iN32 7 ), Ay:0bj 7.Cin, (iNS” 7 y)] (Cssum o T X))

-
-
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Source code

» Prototype implementation of a type reconstruction algorithm in
ocaml, with a simple CLI REPL

 Standard tools (lex+yacc, de Bruijn indices. . .)

» We use the PTS syntax

Axiom A : Type.
is assumed.
Axiom B : forall x : A, Type.
is assumed.
Definition foo :=
fun x : (forall y : A, By) & A => (proj_1 x) (proj_r x).
foo is defined.
> Print foo.
fun x : (forall y : A, By) & A => proj_1 x proj_r x :
forall x : (forally : A, By) & A, B proj_r x
essence = fun x => x x :
forall x : (forally : A, By) & A, B x

vV WV = Vv
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Agenda

» Adding subtyping to the A-framework, with the corresponding
algorithm

» Studying the metatheory of the A-framework
- Church-Rosser
- Subject reduction
- Strong normalization

» Study the impact of proof-functional operators in refiners.
A refiner takes a term with unification meta-variables, and tries to
fill or to generate a proof obligation for the meta-variables

<A1 7?>

¢ Encoding the full power of Anderson-Belnap Relevant Logic
[JSL62] and Routley-Meyer Minimal Relevant Logic B [JPL72]
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Thanks and visit

https://github.com/cstolze/Bull

-
-
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https://github.com/cstolze/Bull

EXTRA SLIDES
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Reductions rules of the A-calculus

Standard 3-reduction
()\XZO’.A1)A2 —8 A1{A2/X}

()\rXZJ.A1)A2 —3 A1{A2/X}
Projection rules
pry (A1,A2) —pr,  Aq
pra (Aq, Az) —pr, JAV
Injection rules
[A1 ,Ag] in‘1’ A3 —iny A1 A3
[A1,Ap]ing Az —in, A2Aj
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Reductions rules of the A-calculus

Standard 3-reduction
()\XZO’.A1)A2 —8 A1{A2/X}

()\rX:U.A1)A2 —3 A1{A2/X}

Projection rules
pry (A1,A2) —pr,  Aq
proy <A1 >A2> —pr, Ap

Injection rules

[A1 ,Ag] in‘{ Ag —iny Aq Aj

[A1 s Ag] ing Aj —in, JAVWANS

In a more ML-like syntax, [A1, Az]in; Az would have been written:

match in; Az with
[in x->Aqx
[ing x -> Ao x

.
.
I 62’2&0/— Stolze, Liquori, Honsell and Scagnetto — Towar amework with Intersection and Union Types




Typing in A-calculus

Xoel (Var)

EXx:0o
[ xobFA:7T [FAi:o—=7 THEAy:0
FFxoh: o7 ) TFA Ay 7 (—E)
FI—A1:0
FEAy:7 WA= 1A% : ;
2 1 2 () Fr-A:oinoe ie{1,2} (E)
M= (A1, D) toNT [=priA:o;

Moxo = Ay p 1A =102
' xThHFAy:p TEFAz:0UT

Fr=A:0; ie{1,2} UE
[ Ao A, AT D] Ag 2 p (VE)

Fl—inffA:a1Uag

(ul)

.
.
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Subtyping rules (=

(No<ono

(2)oUo <o
B)onr<oonr<T
4o<oUr,T<oUT
B)o<w

(6)o <o

()

o1 NT1 < 02MNTo

I &LZJ'Q/— Stolze,

Liquori, Honsell and Scagnetto —

type theory in [BDdL])

B)or1 <o, <me=01UT1 02U
o<, T<p=0<p
(10)on(tUp) < (oeNT)U(cNp)
(1) (e—=7)N(c=p)<o—(TNp)
(12) (e = p)N(t=p)<(cUT) = p
(1Bww—w

)

(14 02 L 01,71 < T2 =
01— T4 < 02— T2
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Subtyping rules (= type theory in [BDdL])

S
Q

Q
c N /AN D
Q Q

Q

Q
\]
Q
Q
\]
c /N
\]

n
\]
AN D
Q
\]

Q
€

)
Q

SECECECICECES
Q

N N N D TN
Q

o1 N7 < 02MNT2

(8)

9)o<77<

(10)

(11)

(12) (e = p)N
3)

14)

o1 <o, <T2=>0UrTy <o2Um
p=0xp
cN(tUp)<(enNT)U(cNp)
o—=T1)N(c—=p)<o—(TNp)
(T—=p)<(eUT)—=p
w€w—ow

(1
(

02 < 01,71 S T2 =
01— T4 < 02— T2

« We have defined a functional-style algorithm with exponential

complexity

« Deciding subtyping is easy when types are in normal form
« Well established domain of set constraints (see eg. Aiken)
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Subtyping algorithm

» Syntax of normal forms

A = wl|o|(An...NA) = (AU...UA)
CNF == (AU...UAN...N(AU...UA)
DNF == (An...NnA)U...U(AN...NA)

» Sketch of the algorithm
- Any judgement o < 7 can be reduced to a judgement whose syntax
is DNF < CNF
- A judgement whose syntax is DNF < CNF can be reduced to
multiple judgements whose syntaxis A < A
- A judgement whose syntax is A < A can be easily decided (¢ < w,
wgp o< iffo=¢,...)
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On relevant operators and relevant logics P/

» Meyer-Routley B relevant logic (with the relevant implication >,
connective) forces the proof to use all the hypothesis, therefore
making the proof relevant

e ... aproof D for ¢ D, ¢ is also proof for ¢ O ¢» whose realizer is the
identity function

Relevant implication O, can be intended as another
proof-functional connective

The typing rule to be added to the Delta-calculus is
xoFA:7 ANl=X

r (_>f I)

rEXNxoA:o—, 1

» As example, in the Delta-calculus with relevant arrow we can prove

¢PNY DrYPNg
PUY DrpU¢
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Example: relevant logic B*

X(oc="1)Noksx:(c="7)No Xx:(c="T)NoNotgx:(c="7)N0o
X(oc="T)Nokspryx:0—="71 X(c="T)NoksprX:o
x:(c =" T)No ks (pryx) (prax) : 7 Apry X) (Pra X = x
Fs Mx:(oc =" 7)No.(pryx)(praX) : ((c =" 7)No) =" 7

The relevant arrow forces us to use all the hypotheses. The proof is
therefore relevant.
However, the affixing property

(0 ="71)="((p="0) =" (p="7))
of the relevant logic B is not encodable. We could try
Nf:(o =" 7).Ng:p—=" o XN xp.f(gX)

However, the essence of A'g:p =" 0.\ x:p.f (g X) is Ag.A\x.x, which is
not the identity.

l &Z/Zéla/— Stolze, Liquori, Honsell and Scagnetto — ork with Intersection and Union Types




Pierce example

» Pierce example:

B
x((p)2) (yy 2| VAN
LEELD kg rp Y

* |n the context where
X:(o1 = o1 = 17)N (02 = 02 = T),Y:p = 01 Uog, Z:p the
corresponding A-term is

A2 [(Aviai.(pry x) v V), (Avioa.(pro X) v V) ((AVip = o1 Uoo.v) y 2)

A JAVY Az

e The only applicable parallel redex is Az y and that gives
[A1, A2] (¥ 2)
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Compact encoding of [BDdL] in the extended
LF

« Because of the shallow encoding, source language and target
language are “mostly" overlapped

o : Type €,,C,,,Cn,CL:0—0— 0
obj : o— Type
Cast : Tlsto.(obj s— objt) —, obj(c_, st)
Csabst : Msto.(obj s —,objt)—,obj(c, st)
Capp : [Msto.0bj(c_, st) —,objs— objt
Csapp : [lst:0.0bj(c_,, st) —,0bj s —,o0bjt

Cor, : MNst:o.obj(c~st)—,(objs)n(objt)
Cin, : Tlsto.(objs)U(objt) —,obj(cy st)
Cspair : Tst:0.(objs)N(objt) —, obj(ch st)
Cssum - T1st0.0bj(c, st) —, (objs)U(objt)
» By extending the logical framework, we eliminate the need of
encoding the essence side conditions via many lines of pure LF
code (see Honsell LF encoding)
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Mints realizers

« First-order predicate NJ logic with subject beta-conversion

rslx] = Py(x)
loisor[X] = VY15 Y] D lo[X Y]
lonos[X] = Io [X] A Foy[X]
louos[X] = o [X]V Foy[X]

« it is more stronger than the Barbanera-Dezani-de’Liguoro type
assignement system

.
.
l &ZW Stolze, Liquori, Honsell and Scagnetto — Toward ogical Framework with Intersection and Union Types




Properties of the A-calculus

» Judgments fully encode pure type assignment derivations D i.e.

BFA:o iff D:B-M:o

Example: the A-term{Ax:o.x, Ax:7.x) oftype o —w oN7T — 7
encodes the type assignment derivation

XokbX:0 XTEX:T
Fl:co—0 FHl:7—=71
l:0—s0cnNrT—=1

Subject reduction for parallel reduction —

» Strong normalization of w-free typable terms

Unicity of typing

Decidability of type checking and type reconstruction
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Splash

Help.

List of commands:

Help. show this list of commands
Load file. for loading a script file
Axiom term : type. define a constant or an axiom
Definition name [: type] := term. define a term
Print name. print the definition of name
Printall. print all the signature (axioms and definitions)
Compute name. normalize name and print the result
Quit. quit

.
.
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Subtyping

» Many of the basic properties of intersection and unions can be
derived

» However, distributivity of intersection over union (and vice versa) is
not derivable

xoN(tUp)Fx:(cNt)U(enNp)

» Therefore, we need a subtyping axiom for distributivity
oN(tUp) < (eNT)U (0N p)
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More examples (opt)

¢ Union commutativity

XoUT,yoky:o XoUut,yrky:T
XoUT,yobky:7Uo XoUT,yrkEy:7Uc XoUTkEX:oUT
XoUTkEX:TU0o

.
.
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More examples (opt)

¢ Union commutativity

XoUT,yoky:o XoUut,yrky:T
XoUT,yobky:7Uo XoUT,yrkEy:7Uc XoUTkEX:oUT
XoUTkEX:TU0o

« Intersection commutativity

XoNTHEX:0NT XoNTHEX:0NT
XoNTHEX:T XoNTkHEX:0o
XoNTEX:TNo
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More examples (opt)

¢ Union commutativity

XoUT,yoky:o XoUut,yrky:T
XoUT,yobky:7Uo XoUT,yrkEy:7Uc XoUTkEX:oUT
XoUTkEX:TU0o

« Intersection commutativity

XoNTHEX:0NT XoNTHEX:0NT
XoNTHEX:T XoNTkHEX:0o
XoNTEX:TNo

« Self-application

X(c—=m)Nokx:(c=>7)No x(c—=T7)NokXx:(c—=T)No
xX(c—=1T)NokX:0—=7T X(c—=T)NokXx:0o
X(c—1T)NokFXxx:T
FXxxx:((c—=7)no) =71

.
-
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Reductions in A-calculus

e ((Ax:0.x) c,(M\x:0.X) C) is typable

cob (Mox)c:0 cobk (Aox)c:o (MAxx)c=(Ix.x)c
co k- {(Axiox)c,(Ax:iox)c):oNo

» (c,(M\x:0.x) c) is not typable

cobc:0 cob(Mox)c:o c#(Mx.x)c
co JF{c,(Ax:o.x)c):oNo
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