
Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

β reduction without rule ξ

Randy Pollack and Masahiko Sato

Version of September 7, 2017

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Overview

A concrete representation of lambda terms.
Locally nameless:

indexes for bound positions,
names for free variables.
Canonical: α conversion is syntactic identity.

Abstraction, lamxM , is a defined function.
Using the defined abstraction, the language looks like
conventional notation.
We can define various reduction relations without rule ξ .
Only works for some relations.

Apparently fails for η .

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Preterms and well formedness

Let i , j , m , n , p , q , range over natural numbers.
Fix a countable set of names, ranged over by x , y , z .
The raw syntax of preterms (ranged over by M , N , P , Q) is

pt ::= Xn x | Jn j | dM, Nen

In preterm syntax, n is the height of the preterm, written hgt M .

Well formedness (written WM) is defined inductively by

WXn x
j < n
WJn j

WP WQ n ≤ hgt P n ≤ hgt Q
WdP, Qen

Well formed preterms are called terms.

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Intended meaning of well formed terms

WXn x
j < n
WJn j

WP WQ n ≤ hgt P n ≤ hgt Q
WdP, Qen

Xn x represents λ1 . . . λn x (so X0 x represents x).
Jn j represents λ1 . . . λn j .

Require j < n for well formedness; otherwise j would be unbound.

If M1 represents t1 and M2 represents t2 then dM1, M2e0
represents (t1 t2) .
Terms are de Bruijn closed using only the black text.
What are the red premises for?

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Abstraction defined as a function on preterms

lamx(Xn y) := if x = y then Jn+1 0 else Xn+1 y
lamx(Jn j) := Jn+1 (j+1)

lamxdM, Nen := dlamxM, lamxNen+1

Abstraction preserves well formedness and raises height by one.

WM =⇒ W(lamxM) hgt (lamxM) = hgt M + 1

Conversely, every term with height a successor is an abstraction.

WM ∧ hgt M = n + 1 =⇒ ∃ P, x .M = lamxP

The red premises of well-formedness are needed for this lemma.
We use A , B as metavariables over abstractions.

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Examples

Using lamxM we can write lambda terms as usual
Notations: write

lamxy M for lamx lamy M .
x for X0 x .

Some combinators: (assuming x 6= y , x 6= z, y 6= z)

I = λ x . x lamxx = J1 0
K = λ x y . x lamxyx = J2 0

false = λ x y . y lamxyy = J2 1

S = λ x y z . (x z) (y z)
lamxyzddx, ze0, dy , ze0e0 = ddJ3 0, J3 2e3, dJ3 1, J3 2e3e3

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Adequacy

Let t range over lambda terms (e.g. Nominal Isabelle lambda
terms).
As usual, M ranges over our terms.
the relation between lambda terms and our terms is given by:

x ∼ X0 x
t1 ∼ M1 t2 ∼ M2

(t1 t2) ∼ dM1, M2e0
t ∼ M

λ x .t ∼ lamxM

∼ respects W : t ∼ M =⇒ WM
∼ is total, single-valued, and injective.

We must define substitution and check that ∼ respects
substitution

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Lifting

To define instantiation we first introduce a lifting function

(Xn y)↑ := Xn+1 y

(Jn j)↑ := Jn+1 (j+1)

(dM, Nen)
↑ := d(M)↑, (N)↑en+1

which we iterate as:

(M)↑0 := M

(M)↑m+1 := ((M)↑m)↑

Lifting preserves well formedness and raises height by one.

WM =⇒ W(M)↑ hgt (M)↑ = hgt M + 1

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Instantiation

Instantiation is a binary function, M[N] .
If hgt M = 0 (M is under no binders), M[N] = M .
Otherwise M[N] fills any holes Jn+1 0 in M and adjusts the rest
of the term:

Xn+1 y [N] := Xn y

Jn+1 0[N] := (N)↑n

Jn+1 (j+1)[N] := Jn j
dM, Pen+1[N] := dM[N], P[N]en

Instantiation is not substitution.
Instantiation preserves well formedness:

WM ∧WN =⇒ W(M[N]) ∧ (hgt M)− 1 ≤ hgt M[N]

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Substitution

Substitution is defined in terms of instantiation:

M[x ← P] := (lamxM)[P]

All the expected properties hold.
Usual substitution lemma:

x 6= y ∧ x /∈ FV(P) ∧W(M,P,N) =⇒
M[x ← N][y ← P] = M[y ← P][x ← N[y ← P]]

Now we can finish adequacy: ∼ respects substitution:

s ∼ M ∧ t ∼ N =⇒ t[x ← s] ∼ N[x ← M]

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

β reduction as usual

Using abstraction we have a natural definition of β reduction:

WM WN

dlamxM, Ne0
β→ M[x ← N]

(β)

M
β→ M ′ WN

dM, Ne0
β→ dM ′, Ne0

WM N
β→ N ′

dM, Ne0
β→ dM, N ′e0

M
β→ N

lamxM
β→ lamxN

(ξ)

Any preterm that participates in this relation is well-formed.
Correct β reduction w.r.t. the meaning of terms given above,
Still contains rule ξ

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Properties of usual β reduction

As usual, rule ξ is invertible:

lamxM
β→ lamxN =⇒ M

β→ N

β reduction does not lower height:

M
β→ N =⇒ hgt M ≤ hgt N

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Generalized lifting

To eliminate rule ξ from our presentation of β reduction, we define
generalized lifting.

(Xn y)i⇑ := Xn+1 y

(Jn j)i⇑ :=

{
Jn+1 j (j < i)
Jn+1 (j+1) (j ≥ i)

(dM, Nen)
i⇑ := d(M)i⇑, (N)i⇑en+1

Preserves well formedness and raises height by one.
Many useful properties of generalized lifting are used, e.g.

Injectivity: W(M,N) ∧ (M)i⇑ = (N)i⇑ =⇒ M = N .

We iterate generalized lifting:

(M)i⇑0 := M

(M)i⇑m+1 := ((M)i⇑m)i⇑

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Generalized instantiation

Generalized instantiation, M[N]i , leaves terms M of height 0
unchanged, and updates abstractions:

Xn+1 y [M]i := Xn y

Jn+1 i[M]i := (M)i⇑n−i

Jn+1 j[M]i :=

{
Jn j (j < i)
Jn (j−1) (j > i)

dP, Qen+1[M]i := dP[M]i , Q[M]ien

A[P]0 = A[P]

n < hgt A ∧ n ≤ hgt P =⇒ n ≤ hgt (A[P]n)

n < hgt A ∧ n ≤ hgt P ∧WA ∧WP =⇒ W(A[P]n)

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

β without rule ξ

Claim the relation • > • defined without a ξ rule:

WA n < hgt A WN n ≤ hgt N
dA, Nen > A[N]n

(β)

M > M ′ n ≤ hgt M WN n ≤ hgt N
dM, Nen > dM ′, Nen

N > N ′ n ≤ hgt N WM n ≤ hgt M
dM, Nen > dM, N ′en

is equivalent to the relation • β→ • given above (and thus to the
usual notion of β reduction).

Proof that M > N =⇒ M
β→ N : by induction on the relation M > N .

Both congruence rule cases use invertibility of rule ξ for relation
β→ .

The converse direction is straightforward. �

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Tait–Martin-Löf parallel reduction: Usual presentation

Parallel reduction (non-deterministic):

X0 x
p→ X0 x

M
p→ M ′ N

p→ N ′

dlamxM, Ne0
p→ M ′[x ← N ′]

(β)

M
p→ N

lamxM
p→ lamxN

(ξ)
M

p→ M ′ N
p→ N ′

dM, Ne0
p→ dM ′, N ′e0

Correct w.r.t. usual presentation.
Overlap between rule (β) and application congruence.

Complete development (deterministic, à la Takahashi):
Remove overlap, forcing every β step to be taken:

M cd→ M ′ N cd→ N ′ M not an abstraction

dM, Ne0
cd→ dM ′, N ′e0

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Parallel reduction without rule ξ

Parallel reduction:

Xn y � Xn y
j < n

Jn j � Jn j
n ≤ hgt M M � M ′ n ≤ hgt N N � N ′

dM, Nen � dM ′, N ′en
n < hgt A A� B n ≤ hgt M M � N

dA, Men � B[N]n

Complete development (remove overlap):

n = hgt M M ≫ M ′ n ≤ hgt N N ≫ N ′

dM, Nen ≫ dM ′, N ′en

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

Church–Rosser theorem

With parallel reduction and complete development, we can carry
out Takahashi’s proof of Church–Rosser.
Although there is no rule ξ , this proof is no easier than usual.

Syntax Operations on preterms β reduction Generalized instantiation Reduction without ξ η

η?

Consider a standard representation of pure η reduction:

WM x 6∈ FV(M)

lamxdM, (X0 x)e0
η→ M

(η)

M
η→ M ′ WN

dM, Ne0
η→ dM ′, Ne0

WM N
η→ N ′

dM, Ne0
η→ dM, N ′e0

M
η→ N

lamxM
η→ lamxN

(ξ)

Rule ξ is not invertible for this relation:

lamxdlamxdx, xe0, xe0
η→ lamxdx, xe0 ,

but not dlamxdx, xe0, xe0
η→ dx, xe0

We might conjecture a ξ -free system for η , but our proof of
correctness (using invertibility of ξ) will fail.
η→ can reduce height, which the previous relations cannot do.

	Syntax
	Operations on preterms
	bold0mu mumu reduction
	Generalized instantiation
	Reduction without bold0mu mumu
	bold0mu mumu

