
POPLMark Reloaded!

Andreas Abel 1 Alberto Momigliano 2 Brigitte Pientka 3

1Department of Computer Science and Engineering, Gothenburg University, Sweden

2DI, Università degli Studi di Milano, Italy

3School of Computer Science, McGill University, Montreal, Canada

September 11, 2017

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 1 / 19

POPLMark Reloaded: A new benchmark for mechanizing
meta-theory of programming languages

Strong normalization of the simply-typed
lambda-calculus using Kripke-style logical
relations.

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 2 / 19

Question 1

Why do we need a (new) benchmark?

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 3 / 19

Before 2005: A Brief Incomplete History

• Isabelle [1986], Coq[1989], Alf/Agda 1 [1990 – 2007], Lego
[1995/98], Elf/Twelf[1993/1998], . . .

• Case studies: Type Soundness, Church Rosser, Cut-elimination,
Compilation, . . .

• Focus on reasoning about formal systems by structural induction;
modelling variable bindings; assumptions; etc.

• Canonical example: Type soundness

• Some normalization proofs:
• Altenkirch, SN for System F in Lego [TLCA 1993]
• Barras/Werner, SN for CoC in Coq [1997]
• C. Coquand, NbE for λσ in ALFA [1999]
• Berghofer, WN for STL in Isabelle [TYPES 2004]
• Abel, WN/SN for STL in Twelf [LFM 2004]

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 4 / 19

POPLMark Challenge: Mechanize System F< [2005]

• Spotlight on

“type preservation and soundness, unique decomposition properties

of operational semantics, proofs of equivalence between algorithmic

and declarative versions of type systems.”

• Focus on representing and reasoning about structures with binders

• Easy to be understood; text book description (TAPL)

• Small (can be mechanized in a couple of hours or days)

• Explore more systematically different proof environments

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 5 / 19

POPLMark Challenge: Looking back

X Popularized the use of proof assistants

X Many submitted solutions

X Explored different techniques for representing bindings

X Good way to learn about a technique / proof assistant

? Long Term Goal: “a future where the papers in conferences such as
POPL and ICFP are routinely accompanied by mechanically checkable
proofs of the theorems they claim.”

? Better understanding of the theoretical foundations of proof
environments

7 Inspired the development of new theoretical foundations

7 Better tool support

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 6 / 19

POPLMark Challenge: Looking back

X Popularized the use of proof assistants

X Many submitted solutions

X Explored different techniques for representing bindings

X Good way to learn about a technique / proof assistant

? Long Term Goal: “a future where the papers in conferences such as
POPL and ICFP are routinely accompanied by mechanically checkable
proofs of the theorems they claim.”

? Better understanding of the theoretical foundations of proof
environments

7 Inspired the development of new theoretical foundations

7 Better tool support

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 6 / 19

POPLMark Challenge: Looking back

X Popularized the use of proof assistants

X Many submitted solutions

X Explored different techniques for representing bindings

X Good way to learn about a technique / proof assistant

? Long Term Goal: “a future where the papers in conferences such as
POPL and ICFP are routinely accompanied by mechanically checkable
proofs of the theorems they claim.”

? Better understanding of the theoretical foundations of proof
environments

7 Inspired the development of new theoretical foundations

7 Better tool support

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 6 / 19

Beyond the POPLMark Challenge

“The POPLMark Challenge is not meant to be exhaustive: other
aspects of programming language theory raise formalization
difficulties that are interestingly different from the problems we
have proposed - to name a few: more complex binding constructs
such as mutually recursive definitions, logical relations proofs,
coinductive simulation arguments, undecidability results, and
linear handling of type environments.” [Aydemir et. al. 2005]

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 7 / 19

POPLMark Reloaded: Goal

Benchmark problems that

• Push the state of the art in the area and outline new areas of research

• Compare systems and mechanized proofs qualitatively

• Understand what infrastructural parts should be generically supported
and factored

• Find bugs in existing proof assistants

• Highlight theoretical limitations of existing proof environments

• Highlight practical limitations of existing proof environments

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 8 / 19

Question 2

Why pick strong normalization for
simply-typed lambda-calculus using

Kripke-style logical relations?

In particular:

We can prove SN without (Kripke-style) logical relations and we’ve
already done it.

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 9 / 19

Question 2

Why pick strong normalization for
simply-typed lambda-calculus using

Kripke-style logical relations?

In particular:

We can prove SN without (Kripke-style) logical relations and we’ve
already done it.

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 9 / 19

Witness 1: Lego [Altenkirch’93]

. . . “following Girard’s Proofs and Types”

Characteristic Features:

• Terms are not well-scoped or well-typed

• Candidate relation is untyped and does not enforce well-scoped terms
=⇒ does not scale to typed-directed evaluation or equivalence
=⇒ maybe better techniques to modularize and structure proof

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 10 / 19

Witness 2: Abella, ATS/HOAS

. . . “following Girard’s Proofs and Types”

• Strictly speaking:

SN for simply-typed λ-calculus plus one constant.

• Adding a constant significantly simplifies the proof

• Reducibility of terms only defined on closed terms

• Strictly speaking:

Show that SN for simply-typed λ-calculus plus one constant
implies also SN for open simply-typed λ-terms

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 11 / 19

Witness 2: Abella, ATS/HOAS

. . . “following Girard’s Proofs and Types”

• Strictly speaking:

SN for simply-typed λ-calculus plus one constant.

• Adding a constant significantly simplifies the proof

• Reducibility of terms only defined on closed terms

• Strictly speaking:

Show that SN for simply-typed λ-calculus plus one constant
implies also SN for open simply-typed λ-terms

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 11 / 19

More Witnesses . . .

• Berghofer : Program extraction from a proof of weak normalization
using Isabelle [2004]
=⇒ Uses de Bruijn encoding (not well-scoped or well-typed)
=⇒ “Compact” mechanization (800 lines)

• Berger et al. [TLCA’93]: Extraction of a normalization by evaluation
using strong evaluation in Minlog
=⇒ Uses well-scoped de Bruijn encoding
=⇒ Domain theoretic semantics

• Doczkal, Schwinghammer [LFMTP’09]: Mechanization of Strong
Normalization Proof for Moggis Computational Metalanguage in
Isabelle/Nominal
=⇒ Use of nominals avoids Kripke-style formulation

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 12 / 19

More Witnesses . . .

• Berghofer : Program extraction from a proof of weak normalization
using Isabelle [2004]
=⇒ Uses de Bruijn encoding (not well-scoped or well-typed)
=⇒ “Compact” mechanization (800 lines)

• Berger et al. [TLCA’93]: Extraction of a normalization by evaluation
using strong evaluation in Minlog
=⇒ Uses well-scoped de Bruijn encoding
=⇒ Domain theoretic semantics

• Doczkal, Schwinghammer [LFMTP’09]: Mechanization of Strong
Normalization Proof for Moggis Computational Metalanguage in
Isabelle/Nominal
=⇒ Use of nominals avoids Kripke-style formulation

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 12 / 19

More Witnesses . . .

• Berghofer : Program extraction from a proof of weak normalization
using Isabelle [2004]
=⇒ Uses de Bruijn encoding (not well-scoped or well-typed)
=⇒ “Compact” mechanization (800 lines)

• Berger et al. [TLCA’93]: Extraction of a normalization by evaluation
using strong evaluation in Minlog
=⇒ Uses well-scoped de Bruijn encoding
=⇒ Domain theoretic semantics

• Doczkal, Schwinghammer [LFMTP’09]: Mechanization of Strong
Normalization Proof for Moggis Computational Metalanguage in
Isabelle/Nominal
=⇒ Use of nominals avoids Kripke-style formulation

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 12 / 19

Why Kripke-style?

• Kripke-style extensions cannot be avoided when we attempt to prove
properties about type-directed evaluation
(see for example mechanizations of Crary’s proof of completenes of

algorithmic equality for LF)

• We want to keep the benchmark problem simple, but it should exhibit
features that allow us to scale systems to more complex problems.

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 13 / 19

Setting the Stage: Simply Typed Lambda-Calculus

Terms M,N ::= x | λx :T .M | M N
Types T ,S ::= B | T ⇒ S
Context Γ ::= · | Γ, x :T
Subs σ ::= ε | σ,N/x

Γ ` M : T Term M has type T in context Γ

x : T ∈ Γ
Γ ` x : T

Γ, x : T ` M : S

Γ ` (λx :T .M) : (T ⇒ S)

Γ ` M : (T ⇒ S) Γ ` N : T

Γ ` (M N) : S

Implement well-typed lambda-terms any way you like!
Intrinsically typed, explicit typing, explicit typing context, HOAS-style, Nominal,
de Bruijn, . . .

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 14 / 19

Setting the Stage: Simply Typed Lambda-Calculus

Terms M,N ::= x | λx :T .M | M N
Types T ,S ::= B | T ⇒ S
Context Γ ::= · | Γ, x :T
Subs σ ::= ε | σ,N/x

Γ ` M : T Term M has type T in context Γ

x : T ∈ Γ
Γ ` x : T

Γ, x : T ` M : S

Γ ` (λx :T .M) : (T ⇒ S)

Γ ` M : (T ⇒ S) Γ ` N : T

Γ ` (M N) : S

Implement well-typed lambda-terms any way you like!
Intrinsically typed, explicit typing, explicit typing context, HOAS-style, Nominal,
de Bruijn, . . .

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 14 / 19

Setting the Stage: Evaluation

Γ ` M −→ M ′ Term M steps to term M ′ in context Γ

Γ, x :T ` M −→ M ′

Γ ` λx :T .M −→ λx :T .M ′ Γ ` (λx :T .M) N −→ [N/x]M

Γ ` M −→ M ′

Γ ` M N −→ M ′ N
Γ ` N −→ N ′

Γ ` M N −→ M N ′

Remark: We chose to make Γ explicit in the evaluation rules; this is not a
requirement! – But your implementation of the rules must allow for evaluating
terms with free variables.

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 15 / 19

Setting the Stage: Reducibility

Reducibility must be defined on well-typed open terms!

Definition (Reducibility Candidates: Γ ` M ∈ RB)

Γ ` M ∈ B iff Γ ` M : B and Γ ` M ∈ sn
Γ ` M ∈ T ⇒ S iff Γ ` M : T ⇒ S and

for all N,∆ such that Γ ≤ρ ∆,
if ∆ ` N ∈ RT then ∆ ` ([ρ]M) N ∈ RS .

• Contexts arise naturally when we want to state properties about
well-typed terms and we want to be precise.

• The definition scales to dependently typed setting and stating
properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use Kripke-style
context extensions?

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 16 / 19

Setting the Stage: Reducibility

Reducibility must be defined on well-typed open terms!

Definition (Reducibility Candidates: Γ ` M ∈ RB)

Γ ` M ∈ B iff Γ ` M : B and Γ ` M ∈ sn
Γ ` M ∈ T ⇒ S iff Γ ` M : T ⇒ S and

for all N,∆ such that Γ ≤ρ ∆,
if ∆ ` N ∈ RT then ∆ ` ([ρ]M) N ∈ RS .

• Contexts arise naturally when we want to state properties about
well-typed terms and we want to be precise.

• The definition scales to dependently typed setting and stating
properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use Kripke-style
context extensions?

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 16 / 19

Setting the Stage: Reducibility

Reducibility must be defined on well-typed open terms!

Definition (Reducibility Candidates: Γ ` M ∈ RB)

Γ ` M ∈ B iff Γ ` M : B and Γ ` M ∈ sn
Γ ` M ∈ T ⇒ S iff Γ ` M : T ⇒ S and

for all N,∆ such that Γ ≤ρ ∆,
if ∆ ` N ∈ RT then ∆ ` ([ρ]M) N ∈ RS .

• Contexts arise naturally when we want to state properties about
well-typed terms and we want to be precise.

• The definition scales to dependently typed setting and stating
properties about type-directed equivalence of lambda-terms.

Do we really need the weakening substitution ρ?
A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 16 / 19

Setting the Stage: Reducibility

Reducibility must be defined on well-typed open terms!

Definition (Reducibility Candidates: Γ ` M ∈ RB)

Γ ` M ∈ B iff Γ ` M : B and Γ ` M ∈ sn
Γ ` M ∈ T ⇒ S iff Γ ` M : T ⇒ S and

for all N,∆ such that Γ ≤ρ ∆,
if ∆ ` N ∈ RT then ∆ ` ([ρ]M) N ∈ RS .

• Contexts arise naturally when we want to state properties about
well-typed terms and we want to be precise.

• The definition scales to dependently typed setting and stating
properties about type-directed equivalence of lambda-terms.

Do we really need to model terms in a “local” context and use Kripke-style
context extensions?

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 16 / 19

Setting the Stage: Strong Normalization

Often defined as:

∀M ′. Γ ` M −→ M ′ =⇒ Γ ` M ′ ∈ SN
Γ ` M ∈ SN

Alternative approach (R. Matthes and F. Joachimski, AML 2003)

• Inductive characterization of normal forms (Γ ` M ∈ sn)

• Normalization proof is by induction on normal forms and type
expressions

• Leads to modular proofs – on paper and in mechanizations

• Show: Γ ` M ∈ SN iff Γ ` M ∈ sn.

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 17 / 19

Setting the Stage: Strong Normalization

Often defined as:

∀M ′. Γ ` M −→ M ′ =⇒ Γ ` M ′ ∈ SN
Γ ` M ∈ SN

Alternative approach (R. Matthes and F. Joachimski, AML 2003)

• Inductive characterization of normal forms (Γ ` M ∈ sn)

• Normalization proof is by induction on normal forms and type
expressions

• Leads to modular proofs – on paper and in mechanizations

• Show: Γ ` M ∈ SN iff Γ ` M ∈ sn.

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 17 / 19

Why do we think this is an interesting case study?

• Richer induction principles needed than just structural induction
based on sub-derivations

• Stratified definitions for reducibility candidates

• Comparison and trade-offs when modelling well-scoped and well-typed
terms

• Good way to teach logical relations proofs
=⇒ maybe extend it to products and sums

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 18 / 19

A Call for Action

• Be part of formulating and tackling the challenge

• Choose your favorite proof assistant and complete the challenge

• Be part of analyzing mechanizations

Last but not least: Propose a different challenge!

A. Abel, A. Momigliano, B. Pientka POPLMark Reloaded! 19 / 19

