
Kripke-Style
Contextual Modal Type Theory
YUITO MURASE

THE UNIVERSITY OF TOKYO



Agenda

 Background

 Logic

 Type System

 Future Plan/Related Work



Background: Syntactical Metaprogramming

 Extend the syntax of programming languages
 Macros in Lisp Family

 Template Haskell

 Scala Macros

 … etc.

 They are not type-safe
 Well-typed code with syntactic extension 

can extend to ill-typed code

 We want type theory for syntactical metaprogramming

 Especially logical foundation (via the Curry-Howard Isomorphism)



Example: or macro

 Quasi-quotation: basic construct for code generation
 Lisp-family, Template Haskell

 Macros are functions from code to code
 Including open code

(defmacro or (x y)
`(if ,x true ,y))

(or a (is-zero b))
=> (if a true (is-zero b)



Example: or macro

 Quasi-quotation: basic construct for code generation
 Lisp-family, Template Haskell

 Macros are functions from code to code
 Including open code

(defmacro or (x y)
`(if ,x true ,y))

(or a (is-zero b))
=> (if a true (is-zero b)



Example: or macro

 Quasi-quotation: basic construct for code generation
 Lisp-family, Template Haskell

 Macros are functions from code to code
 Including open code

(defmacro or (x y)
`(if ,x true ,y))

(or a (is-zero b))
=> (if a true (is-zero b)



(bind (= x x))

=> (lambda (x) (= x x))

Example: Binding Manipulation

 Generate a new binding

 Access to free variables in code

(defmacro bind (body)

`(lambda (x) ,body))



Background: Modal Type Theory

 Type theory that corresponds to modal logic
 The Curry-Howard Isomorphism

□A
 Logic : proposition for “A is valid”

 Type theory : type of “closed code of type A”

 Some formulation for modal logic
 Dual context formulation

 Kripke-style formulation



Dual-Context Formulation
 Proposed by Pfenning and Davies[2001]

 Based on the idea of categorical judgment

 Hypothetical judgment have two-levels
 Object-level and meta-level

 Syntax includes meta-variables

 Corresponds to S4 modal logic

or := λx:□bool. λy:□bool.
let box u = x in
let box v = y in
`(if u then true else v)



Kripke-Style Formulation
 Proposed by Martini and Masini(1996), Pfenning and 
Wong(1995)

 Hypothetical Judgment have context stack
 Justified by Kripke’s multiple-world semantics(1963)

 Namespace for variables are uniform

 Syntax have quasi-quotaion

 4 variations: K, T, K4, S4

or := λx:□bool. λy:□bool.
`(if ,x then true else ,v)



Contextual Modal Type Theory
 Introduced by Nanevski et al(2007)

 Contextual modality : [Γ]A
 Logic: A is valid under the context Γ

 Kripke Semantics: For any next world where Γ holds, A also holds

 Type: Code with free variables

 Generalization of dual-context modal calculi

 Syntax have meta-variables and explicit substitution

bind := λx:[A]bool. let box u = x in
`(λy:A.u[y])

bind `<x:A>(x==x) → λx:A(x==x)



What we want?
 Quasi-quotation → Kripke-style formulation

 The axiom T is not necessary → Kripke-style formulation
 T corresponds to run-time code evaluation

 Binding manipulation → Contextual modal type

⇒ Kripke-style contextual modal type theory

Dual-context Kripke-style

Modal Pfenning and Davies[2001] Martini and Masini[1996]
Pfenning and Wong[1995]

Contextual Nanevski et al[2007] HERE!



Kripke-style Contextual
Modal Type Theory

 Another Contextual Modal Type Theory

 Generalization of Kripke-style modal type theory
 Kripke-style formulation

 Quasi-quotation

 Capable of binding-manipulation

 Four variations (correspondence to K, T, K4, S4)

bind := λy:[A]bool.
`<>(λx:A. ,<x>y)



Agenda

 Background

 Logic

 Type System

 Future Plan/Related Work



Kripke-style Hypothetical Judgment
 Proposed by [Pfenning and Wong, 1995]

 Contexts form a stack

 Correspondence to Kripke’s multiple-world semantics(1963)

 The stack can be regarded as a sequence of worlds

𝑤𝑛 𝑤1𝑤𝑛−1



Kripke-style Hypothetical Judgment
 Substitution Principle

 Reflexive Principle – assuming reflexivity

 Transitive Principle – assuming transitivity

 Four Variations

Reflexive ✓ ✓

Transitive ✓ ✓

K T K4 S4



Deduction Rules

Rightmost ContextRest of the Context Stack



Deduction Rules

𝑤3 𝑤1𝑤2

𝑤3 𝑤2



Deduction Rules

𝑤2 𝑤2 𝑤1

𝑤2 𝑤1



Deduction Rules



Examples
1. ⊢𝐾 [C](𝐴 → 𝐵) → 𝐶 𝐴 → 𝐶 𝐵

2. ⊢𝑇 []𝐴 → 𝐴

3. ⊢𝐾4 𝐵 𝐴 → 𝐶 𝐵 𝐴

4. ⊢𝐾 []𝐴 → 𝐵, 𝐶 𝐴

5. ⊢𝐾 𝐵, 𝐶 𝐴 → 𝐶, 𝐵 𝐴

6. ⊢𝐾 𝐵, 𝐵 𝐴 → 𝐵 𝐴

7. ⊢𝐾 𝐵 𝐴 → 𝐶,𝐷 𝐵 → 𝐶,𝐷 𝐴

8. ⊢𝐾 𝐵 𝐴 → [] 𝐵 → 𝐴

9. ⊢𝐾[] 𝐵 → 𝐴 → 𝐵 𝐴



Examples
1. ⊢𝐾 [C](𝐴 → 𝐵) → 𝐶 𝐴 → 𝐶 𝐵

2. ⊢𝑇 []𝐴 → 𝐴

3. ⊢𝐾4 𝐵 𝐴 → 𝐶 𝐵 𝐴

4. ⊢𝐾 []𝐴 → 𝐵, 𝐶 𝐴

5. ⊢𝐾 𝐵, 𝐶 𝐴 → 𝐶, 𝐵 𝐴

6. ⊢𝐾 𝐵, 𝐵 𝐴 → 𝐵 𝐴

7. ⊢𝐾 𝐵 𝐴 → 𝐶,𝐷 𝐵 → 𝐶,𝐷 𝐴

8. ⊢𝐾 𝐵 𝐴 → [] 𝐵 → 𝐴

9. ⊢𝐾[] 𝐵 → 𝐴 → 𝐵 𝐴



Examples
1. ⊢𝐾 [C](𝐴 → 𝐵) → 𝐶 𝐴 → 𝐶 𝐵

2. ⊢𝑇 []𝐴 → 𝐴

3. ⊢𝐾4 𝐵 𝐴 → 𝐶 𝐵 𝐴

4. ⊢𝐾 []𝐴 → 𝐵, 𝐶 𝐴

5. ⊢𝐾 𝐵, 𝐶 𝐴 → 𝐶, 𝐵 𝐴

6. ⊢𝐾 𝐵, 𝐵 𝐴 → 𝐵 𝐴

7. ⊢𝐾 𝐵 𝐴 → 𝐶,𝐷 𝐵 → 𝐶,𝐷 𝐴

8. ⊢𝐾 𝐵 𝐴 → [] 𝐵 → 𝐴

9. ⊢𝐾[] 𝐵 → 𝐴 → 𝐵 𝐴



Examples
1. ⊢𝐾 [C](𝐴 → 𝐵) → 𝐶 𝐴 → 𝐶 𝐵

2. ⊢𝑇 []𝐴 → 𝐴

3. ⊢𝐾4 𝐵 𝐴 → 𝐶 𝐵 𝐴

4. ⊢𝐾 []𝐴 → 𝐵, 𝐶 𝐴

5. ⊢𝐾 𝐵, 𝐶 𝐴 → 𝐶, 𝐵 𝐴

6. ⊢𝐾 𝐵, 𝐵 𝐴 → 𝐵 𝐴

7. ⊢𝐾 𝐵 𝐴 → 𝐶,𝐷 𝐵 → 𝐶,𝐷 𝐴

8. ⊢𝐾 𝐵 𝐴 → [] 𝐵 → 𝐴

9. ⊢𝐾[] 𝐵 → 𝐴 → 𝐵 𝐴



Agenda

 Background

 Logic

 Type System

 Future Plan/Related Work



Kripke-style Contextual
Modal Type Theory
 Correspond to KCML under the Curry-Howard Isomorphism
 Proposition ⇔ Type

 Derivation Tree ⇔ Program

quotation

unquotation

Contextual Modal Type



Typing Rules



Quote

 A binding form

 Term representation for hypothetical judgment
 Γ : a list of assumptions

 M : derivation tree

 Can be seen as “code with free variables”
 Γ : a list of free variables

 M : body of code



Unquote

 An application form

 Instantiate the quoted hypothetical judgment

 Can be seen as “evaluation of the code through 𝑙-stages”
 𝑁1⋯𝑁𝑛 are the top-level definitions of the free variables

 𝑙 = 0 → run-time code evaluation e.g. eval function



Substitution
𝑁1/𝑥1⋯𝑁𝑛/𝑥𝑛 𝑙

 Substitute free variables at level 𝑙

(Substitution Lemma)

Ψ; Γ𝑙; ⋯ ; Γ1⊢M:T



Level Substitution
↑𝑙
𝑛

 Merge the 𝑙th context with the 𝑙 + 1th context (when 𝑛 = 0)

 Insert 𝑛 − 1 context upon the 𝑙th context (when n ≥ 1)

(Level Substitution Lemma)



Reduction/Expansion Rules
 β-Reduction

 η-Expansion



Example: or macro

(defmacro or (x y)
`(if ,x true ,y))

or := λx:[A]bool. λy:[A]bool.
`<w:A>(if ,1<w>(x)

then true
else ,1<w>(y)) 



Example: or macro
(or (= x x) false)

=> (if (= x x)

true

false)

,<w>(or `<w:A>(w=w) `<w:A>(false))
=> if w = w

then true
else false



Example:
binding manipulation

(defmacro bind (y)
`(lambda (x) ,y))

bind := λy:[A]bool.
`<>(λx:A.,1<x>y)



Example:
binding manipulation

(bind (= x x))

=> (lambda (x) (= x x))

,<>(bind (`<x:A>(x=x)))
=> λx:A. x=x



Agenda

 Background

 Logic

 Type System

 Future Plan/Related Work



Future Plan

 Motivation: Reasoning syntactical metaprogramming

 Develop stronger type theory
 Environment Polymorphism

 Develop a programming languages with type-safe 
syntactical metaprogramming

 Other problems
 Confluency and Strong normalization

 Categorical Semantics



Environment Polymorphism

 The type of or macro is too specific
 []bool→ []bool→ []bool

 [A]bool→ [A]bool→ [A]bool

 [B, C]bool→ [B, C]bool→ [B, C]bool

 Quantify the environment
∀γ.[γ]bool→[γ]bool→[γ]bool

 Under construction



Related work:
Linear Temporal Type Theory

 λ○ [Davies, 1996] Correspond to linear temporal logic
 Treats open code

 Code generation is essentially hygienic

 Cannot express the bind macro

λ○[Davies,1996]
Environment Classifiers
[Taha&Nielsen, 2003]
MacroML[Ganz et al, 2001]

Dual-Context
Kripke-Style
CMTT
KCMTT

AIM[Moggi et al., 1999]
λ○□[Yuse&Igarashi, 2006]

K,T,K4,S4 Modal Type Theory

Linear Temporal Type Theory



Related work: λ𝑜𝑝𝑒𝑛
𝑠𝑖𝑚

 Proposed by Kim et al.(2006)
 “A polymorphic modal type system for lisp-like multi-staged languages”

 Extend modal types to have context
 □(Γ ▷ 𝐴)

 Programming language with imperative features

 Undesirable nature as typed lambda calculi
 α-renaming is restricted

 Reduction rule is restricted



Summary
 We want type theory that reasons syntactical 
metaprogramming

 We proposed Kripke-style contextual modal type theory
 Lisp-like quasi-quotation syntax

 Contextual modal type

 4 variants(K, T, K4, S4)

 Proved subject reduction of KCMTT

 Future work
 Prove confluence and strong normalization

 Develop the type theory

 Develop the programming language


