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ABSTRACT

Under the Curry-Howard isomorphism, modal operators corre-
spond to the type of closed code. Nanevski et al. generalized this
result and proposed the contextual modal type theory. They intro-
duced the notion of context that corresponds to free variables of
code. Therefore the contextual modal type theory treats open code.

This paper provides another formulation of contextual modal
type theory: Kripke-style contextual modal type theory. Our type
system is based on the Kripke-style formulation of modal logic,
whereas the original system is based on the dual-context formula-
tion. The resulting system has Lisp-like quasiquotation, and hence
we expect that KCMTT is adequate for the basis of syntactical
metaprogramming,.
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1 INTRODUCTION

The theory of modal calculi, which corresponds to intuitionistic
modal logic through the Curry-Howard correspondence [11], have
been studied since 1990s [1, 6, 8, 9]. It is known that some modali-
ties correspond to types of closed code, that is, code without free
variables. For example, the type OA represents closed code that will
be evaluated to the value of type A. From this perspective, modal
calculi have been studied as a foundation for staged computation
and run-time code generation [3].

The main restriction of modal calculi is that they can manipulate
only closed codes. Nanevski et al [7] proposed a solution to this
problem, as Contextual Modal Type Theory(CMTT). Contextual
modal types are a generalized notion of modal types. They are al-
lowed to have an environment in a modal operator. For example, the
type [x: A, y: B]C represents code that will be evaluated to the value
of type C, under the environment x: A, y: B. As you can see, modal
types are the special case of contextual modal types, where envi-
ronments are always empty (and therefore code is closed). CMTT is
based on Pfenning and Davies’ dual-context modal type system [8]
(we borrow the name ’dual-context’ from Kavvos [4]). Their modal
type system corresponds to S4 modal logic, and therefore CMTT
corresponds to S4 modal logic.

In this paper, we propose another type system for CMTT. To
distinguish from the original CMTT, we call our type system as
Kripke-style CMTT (KCMTT). As the name shows, KCMTT is a
generalization of the Kripke-style modal type system[3, 6, 9], where
contexts form stack and terms have Lisp-like quasi-quotation. As a
result, KCMTT provides four variations that correspond to K, T, K4,
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S4 respectively. KCMTT is different from the original CMTT at this
point. The following table shows the position of KCMTT among
related work.

Modal Type | Contextual Modal Type
Dual-Context (8] (7]
Kripke-Style [6, 9] KCMTT

The paper is structured as follows. In Section 2, we provide
Kripke-style contextual modal logic, which is the logic part of
KCMTT. In section 3, we give the definition KCMTT in detail and
show fundamental properties. Finally, we discuss future work and
our motivation for KCMTT.

2 KRIPKE-STYLE CONTEXTUAL MODAL
LOGIC

Before the definition of the type system, we introduce Kripke-style
natural deduction for contextual modal logic(KCML). KCML is a
natural extension of Pfenning and Davies’ [8] Kripke-style modal
logic. The fundamental idea of KCML and Kripke-style modal logic
is the Kripke-style judgment, which has a stack of context.

First, we explain the notion of Kripke-style hypothetical judg-
ment and then construct natural deduction system. We also show
that our system is well-defined, that is, introduction and elimina-
tion rules for contextual modality satisfy local-soundness and local
completeness [8].

2.1 Kripke-Style Hypothetical Judgment

First, we introduce Kripke-style hypothetical judgment, a general-
ization of hypothetical judgment. The idea of Kripke-style hypo-
thetical judgment is not new: Martini and Masini [6] and Pfenning
and Wong [9] initially proposed Kripke-style judgment around the
same time, to construct modal calculi.

In a Kripke-style hypothetical judgment, hypotheses form a
stack, where semicolons separate contexts. We write A, B, ... for
propositions, I for hypotheses, and ¥ for a stack of hypotheses.

L T—t;.. s H A

Informally, this judgment states the following fact from the view-
point of Kripke semantics: for arbitrary world sequence w;,, —
Wyp—1 — ... = wy, the proposition A holds at the world wy if T},
holds in wyy,, I};—1 holds in w,,_1, and so on. When the context
stack has single context, it is equivalent to hypotetical judgment.

In the rest of this section, we construct a natural deduction
system on the Kripke-style hypothetical judgment. First, we define
the following hyp rule, as we can use the assumption in the current
world as the conclusion.

A€eT

h =
Yy 1A
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We construct natural deduction system of KCML in the following
way. First, we define structural properties that Kripke-style judg-
ment should satisfy. Afterward, we add rules for logical connectives
so that those principles are formally proved as metatheory.

First, we define the following substitution principle. The substi-
tution principle states that assumptions in a level can be replaced
with other assumptions when we can conclude all of the former
assumptions from the latter ones. This principle generalizes the
usual substitution principle which substitutes a single variable. This
style is useful when we reason quotations in Section 3.

Substitution Principle If ¥;A;, ..., Ap; ¥ B and ¥;T
A; holds forall 1 < i < n, then ‘I’;F;‘I” ~B.

In addition to substitution principle, we can add two structural
principles imposing some properties of world relations: reflexivity
and transitivity.

As we said before, a stack of context is corresponds to a sequence
of worlds. When the world relation satisfies reflexsivity, any two
adjacent worlds in the stack can be same. Therefore it is natural to
assume that we can merge them.

Reflexive Principle If ¥;T;T; %' - A then W;T,T'; ¥ + A

Same discussion applies when the world relation satisfies transitiv-
ity. In this case, we can insert contexts between adjacent contexts.

Transitive Principle If ¥;T; %' - A, then ¥;...;T;¥ F A

As aresult, we have four variations of logic depending on whether
we assume reflexivity and transitivity of the world relation. In clas-
sical modal logic [5], it is known that K, T, K4, and S4 modal logic
correspond to those properties of the world relation. Therefore we
identify symbols K, T, K4, S4 with those variations. In the rest of
this paper, we write ¥ =g A when we assume no properties of
the world relation. We write ¥ =7 A when we assume reflexivity,
¥ g4 A when we assume transitivity, and ¥ g4 A when we
assume both. We just write ¥ = A when we do not assume those
conditions.

2.2 Kripke-Style Natural Deduction

Now we are ready to construct a natural deduction system for
KCML. For simplicity, we consider the fragment with implication
and contextual modality. Let us denote propositional variables with
P,Q,.... Propositions in KCML are inductively defined as follows.

Context I':=- | AT

Propositions A,B:=P | A— B|[T]A
For a contextual modality [T ]A, we call the formar part context part,
and the latter body part.

Let us define introduction and elimination rules for logical con-

nectives. For implications, their introduction and elimination rules
are almost same as usual hypothetical judgment.

¥, T,AFB

I ¥.;THA-B
¥;T—A—-B

¥;T B

¥,THA

Rules for implications are concerned with only the current world.
Other worlds in the context stack are used only when we use con-
textual modal operator.

The introduction rule for contextual modality is defined as fol-
lows.
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[ ¥,T'—A
¥+ [T]A
Kripke’s multiple world semantics justifies this rule. Let us think
of a special case where ¥;T; - = A. The current world corresponds
to the arbitrary world next to I', and we can interpret “A holds
for any world next to I'”. By the definition of modal operator in
Kripke’s multiple world semantics, we conclude that “0A holds at
I”. Contextual modality generalizes modal operator to have context.
When we assume neither reflexivity nor transitivity, the corre-
sponding elimination rule is defines as follows. This rule states that
A holds in the next world assuming T’ when [B; ... B,, ]JA holds at
the current world and B; holds in the next world for each i assum-
ing I'. As you can see, introduction / elimination rules for modal
operator interact with context stack by pushing and popping.

¥+ [By...B,lA ¥.THB;forl<i<m
[IE ¥.THA
We can generalize this elimination rules to support reflexivity
and transitivity as follows. Assuming reflexivity, we can identify
the current world as the next world, and this corresponds to the
case | = 0. Assuming transitivity, the Ith next world is also the next
world for [ > 1.

e ¥ b [By,...,Bn]A ¥.T);...;T FBifori<ism
! ¥;I;...;THA

h I=1 forK [=0,1 forT

WRETEY 151 forKa [20 for S4

Pfenning and Davies[8] stated that the elimination rule should
not be too strong or too weak concerning the introduction rule,
and proposed two conditions that introduction/elimination rules
should satisfy: local soundness and local completeness. We should
confirm that introduction/elimination rules for contextual modal
types satisfy these conditions.

Let us think of the case of S4. The same discussion holds for K, T,
and K4. Local soundness is the property that an elimination rule is
not too strong with respect to the introduction rule. This property
is shown by the following local reduction pattern where n > 0.
This pattern demonstrates that we can omit introduction followed
by elimination. D is generated from D and &£, with substitution,
reflexive, and transitive principle.

D
¥Y;Aq,...,Ap, B £
¥+ [Af,...,Apn]B ¥;I;;...; T HFAjfort<i<m
¥;I;;...;IT B

[JE;

UR

I

D
¥;Iy;...;I1 =B
On the other hand, local completeness is the property that an
elimination rule is not too weak with respect to the introduction
rule. This property is shown by the following local expansion pat-
tern. This pattern demonstrates that original judgment (in this
pattern, ¥ = [Ay,. .., A, ]B) can be restored after elimination.
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D
Y+ [Ag,...,An]B
VE
h
D Py AL AL A
[ ¥+ [Ay,...,An]B fori<i<m
! Y. Ay,....,A, B

5+ [A1,....Am]B
We call this natural deduction system KCML, which consists
of Kripke-style judgment, the hyp rule, and the introduction and
elimination rules for implication and contextual modality.

2.3 Fundamental Properties
Tueorem 2.1. (1) ¥ g A= ¥ Fx A forX € {T,K4,54}
QYT A=>¥ g A
B YFgs A= TP g A

Proor. For (1), it easy to show that derivation tree of ¥ g
A is also derivation tree of ¥ Fx A for X € {T,K4,54}. Same
discussion for (2) and (3). O

Finally, we formally prove that KCML satisfies the substitution,
reflexive, and transitive principles.

THEOREM 2.2. (1) ForX € {K,T,K4,54},if ¥;A;... Ap;... Fx

B and ¥;T Fx A; holds forall1 < i < m, then¥;T;... —x B.
(2) ForX € {T,S4}, if ¥;T;T;... -x B, then ¥;I.T';... Fx B.
(3) ForX € {K4,54},if ¥;T;...x B, then ¥;...;T;... Fx B.
Proor. By induction on the derivation rules. O
2.4 Examples
We show some examples provable in KCML.
(1) Fk [C]I(A— B) - [C]A— [C]B
(2)BFr[B]JA—= A
(3) Fka [C]A - [D][C]A  (6) Fk [A]A
@Fk[ClA-[C.D]A () kg [A]B—[](A— B)

G)Fx[C.ClA-[C]A  (®)Fk [1(A—B) - [A]B

In these examples, you can see that contextual modality gener-
alizes modality. Each of (1), (2), (3) corresponds to the contextual
version of axioms K, T, and 4. Note that (2) is derivable assuming re-
flexivity, and (3) assuming transitivity. Figure 1 gives the derivation
tree of (1). We omit derivation trees for other examples.

[}]1?) T ¢ [C](A = B) b T o e :
! ICHx A—> B I;C g A
—E
1 LCFxB
T x [CIB

-]

[C](A—-B)Fk [Cl]A—[C]B
k [€](A-B) - [C]A—[C]B

-1
where T := [C](A - B),[C]A

Figure 1: Example of a Derivation Tree
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With the introduction rule for contextual modality, we can iden-
tify the proposition [T']A with the hypothetical judgment T - A
(not Kripke-style hypothetical judgment). The propositions (4), (5)
and (6) represent weakening, contraction, and the hyp rule, demon-
strating this idea.

The propositions (7) and (8) show that contextual modality is
equivalent to modality with implication. In this sense, contextual
modal logic is not stronger than modal logic. However, we think
that contextual modality enables us a finer analysis of some notions.
For example, our motivation for contextual modality is to reason
binding manipulation on open code. We give detail in Section 4.

3 KRIPKE-STYLE CONTEXTUAL MODAL
TYPE THEORY

In this section, we construct Kripke-style contextual modal type
theory (KCMTT), a typed lambda calculus which corresponds to
KCML through the Curry-Howard correspondence [11].

3.1 Type System

We write x,y, . . . for variables, 7 for base types, I, m,n. .. for non-
negative integers. The syntax of KCMTT is defined as follows.

Types ST w=1|S>T|[St,...,Sm]T
Terms M,N,L :=x|Ax:T.M | MN
| (1T T )M | (NG, ... Ny YM
Context r =:==-|LL,x:T
Context Stack ¥ o= |¥T
Judgment J =Y¥hkx M:T(X € {K,K4,T,S4})

ForacontextI' =x; : Ty ... : Tyn, we define the domain of T
as dom(T) = xq,...,%;, and the range of T as rg(T) = T, ..., Tpy.
For a context stack ‘I’ Iy;...; I, we also define the domain of ¥
as dom(¥) = dom(Iy),...,dom(I}y,). Let us think of a Kripke-style
judgment ¥ — M : T. For the case of K and K4, it is enough to
assume that variables in the range of T are distinct for each context
I' in ¥. However, in the case of T and S4 adjacent contexts can be
merged by the reflexive principle, and therefore we assume that all
variables in the domain of ¥ are distinct.

In KCMTT, two constructs are added to simply typed lambda
calcuclus [11]: quotation and unquotation. From the viewpoint of
staged computation, a quotation ‘(I')M can be interpreted as “a code
of M under the environment I'”. On the other hand, unquotation
can be seen as “evaluation of the code M through [ stages, giving
the environmt Ny, ..., Np,”. As a special case, 0-level unquotation
can be interpreted as eval function in Lisp.

The typing rules of KCMTT are defined as follows. Those rules
correspond to deduction rules of KCML in Section 2. In the rest
of this paper, we assume that all terms are typed: for any term M,
there exists a type judgment ¥ = M : T. We also identify terms
under a-equivalence in Definition 3.5, and hence we can rename
bound variables.

x:TeT
.+ x

¥:I''x:THM:S

(Var)
Y.THAx:TM:T—S

(Abs)

Y. ITHM:T—->S Y. THN:T
¥.THMN:S

(App)
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Y.T—M:T
“r)M : [rg(T)]T
¥I;..; N i T
Ye=M:[T,...,TulS fori<ism
¥;Iy;...; 0 F Ny, N,)M 2 S
I=1 forK [=0,1 forT
[>21 forK4 [=20 for S4

In KCMTT, free variables have levels which correspond to the
depth of the context stack. For [ > 1, the set of level-I free variables
in a term M, FV;(M), is defined as follows.

{x} whenl=1

(Quo) v

(Unq),

where {

FV; =
1) @ otherwise
FVi(M) — henl = 1
FVi(Ax: T.M) 1(M) = {x} when |
FVi(M) otherwise
FVi(MN) = FV;(M) U FV;(N)
FVi(“«(r)M) = FVj41(M)
FVi(,k(Ny,..,N,,)M)
_ Ulsism FVi(N;) when ! < k
| FVisk(M) U Us<icm FViI(N;)  otherwise

For a judgment I}y;...;Iy = M : T, FV;(M) corresponds to the
I-th context I';. We can formally state this idea by the following
lemma.

LEMMA 3.1. If ¥;Ty;...;Ty B M: T, then FVi(M) S dom(T}).

Proor. By induction on the derivation. O

A quotation ‘(T)M corresponds to the [ ]-introduction rule in
KCML. T is required to include all level-1 free variables in M by
the (Quo) rule, and therefore there are no ill-formed codes with
“undeclared variables”. An unquotation , I{Ny, ..., N,,,}M corresponds
to the []-elimination rule in KCML. In contrast to quotation, it
substitutes all level-1 free variables in M with Ny, ..., Ny,.

3.2 Substitution

For | = 1, a substitution [Ny /x1, . . ., Np [ X, 17 is @ meta operation
that maps a term to a term. It substitutes level-I free variables
X1,...,Xm with terms Ny, ..., Ny, respectively.

Substitution is inductively defined as follows. We denote o for
a content of substitution. For 0 = Ny /x1,. .., Ny, /xm, we define
FVi(o) = U1<i<m FVI(N;) and dom(o) = x1, . . ., Xp,. We assume
that all variables in dom(o) are distinct.

{N whenl!=1and N/x € o
x[o]r =

x  otherwise
(MN)[e]i = (M[a];)(N[a]1)

Ax:A.(M[c];) whenl =1,
(x: AM)[o]; = ;‘ni i";”g/i (o)
Ax:A.(M[c];) whenl > 1

“ry(Mloli+1)
{,uNl[a]l...Nm[a]z)M

(«mM)[e];

(,k(N;...N,, YM)[c]; when [ < k

Jk(Ni[0];...Nm[o1))M[c]j—k otherwise
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Substitution corresponds to rewriting proof trees with the sub-
stitution principle in KCML. The following substitution lemma
formally states the substitution principle in KCMTT.

LEMMA 3.2 (SUBSTITUTION LEMMA).

If¥x1:51, s Xm :Sm;—15. . ;T M T and ¥;T = N; & S;
foralll < i < m,then ¥;I3T_y;...;I1 = M[o];: T, where
o =Ni/x1,...,Nm/[xm.

ProoF. By induction on the derivation rules. O

Note that this substitution is capture-avoiding one, though there
is apparently no collision check for quotation. It works because the
substitution and the bindings of the quotation are at different levels.
As a result of substitution lemma, we can state that weakening,
exchange, and single substitution preserves types.

3.3 Level Substitution

Forl = 1and m 2 0, a level substitution 1;" is a meta operation
that maps a term to a term.

x T;n =x
(MN) 17" = (M 1" )(N 1]")
(Ax: AM) 1] = Ax: A(M 1T")
(«rym) 17" = (M 1)

S k+m—1(N{17",...N, 17" YM whenl < k
SN T, s N 1T WM T;rik otherwise

(yk(N17---’Nn>M) T;n

The idea of the level substitution may not be intuitive. Proof theoreti-
cally, it corresponds to rewriting proof-trees with reflexive/transitive
principles. The following lemmas formally state those principles.

LEMMA 3.3 (LEVEL SUBSTITUTION LEMMA). (i) ForX € {T, S4},

if ;T 5T Fx MiT , then ¥;T4q,175.. 50 Fx
M1Y:T.
(ii) For X € {K4,54} andm > 1, if ¥;T;4151y;.. ;T Bx M:T,

then ‘P;FIH;‘I";TI;...;H Fx M T;n:T where W' is size-
(m — 1) stack of empty contexis.

Proor. By induction on the derivation rules. O

Note that a level substitution Ti is identity on terms. Therefore
the level substituion lemma for the K variant is trivial.

3.4 Equivalence on Terms
Now we are ready to define a-equivalence, f-reduction and 75-
expansion rules.
Definition 3.4. Let ~ be a binary relation on terms. ~ is compatible

iff it satisfies the following conditions.

My ~ My = Ax:T.M; ~ Ax:T.M,

M; ~ My = (M;N) ~ (M2N)

My ~ My = (NMy) ~ (NMy)

My ~ My = “(T)My ~ “(T)M;
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My ~ My = JI(N;...Np )My ~ ,I{N;...N,,)M>

1 1 1 1
My ~ My = ,KLy...Lpy,My,Ly...L,)N ~ J{Ly...Lp,,My,L;...L,,)N

Definition 3.5. a-equivalence = is the least transitive, reflexive,
and compatible relation on terms satisfying the following:

i T.M =g dy: T.(M[x/y]1)

ot Th s X T )M = (yltTl,---»ym:Tm)(M[yl/xl’ s ’ym/xm]l)

R E
Definition 3.6. f-reduction = and n-expansion = are the least
compatible relations on terms which satisfy the following:

R
(Ax: AM)N = M[N/x];
R k
SN, s N Y (1T ey X i T M = MO 17 [Ny /%15, N [xm |1

E
M= Ax:T.Mx
whenYHM:T - S

M g Ux1i T e X T ) (, {XIM)
when¥ =M : [T,...,T,,]S
Finally, we get subject reduction and expansion.
THEOREM 3.7 (SUuBJECT REDUCTION/EXPANSION). (i) If ¥

R
M:T and M= N, then Y+ N:T .
E
(ii)) f Y= M:T and M= N, then ¥ = N:T.

R E
Proor. By induction on the definition of = and =. The base
cases are proved by Lemma 3.2 and 3.3. O

3.5 Examples

The following examples show KCMTT type judgments which cor-

respond to examples in Section 2. We use X,Y for higher level

variables, and a, b for lower ones.

(1) Fg AX:[C](A = B).AY:[C]A.“(a:C)(, 1{a)X)(, 1{a)Y)
:[Cl(A—B) - [C]A—~[C]B

(2) a: BT AX:[B]A.,0(a)X : [B]JA > A

(3) Fka AX:[CJA.“(a:D)(b:C),2(b)X : [C]A - [D][C]A

(4) Fg AX:[C]A.“(a:C,b:D),1{a)X : [C]A = [C,D]A

(5) I—KAX [C,ClA.“(a:C),1{a,a)X : [C,C]A — [C]A

(6) Fx “(a:A)a: [A]A

(7) I—K AX [A]B.“()(Aa: A.,1(a)X) : [A]B — [](A — B)

(8) Fx AX:[J(A = B)."(a:4) ( 1)X)a : [](A - B) - [A]B

4 FUTURE WORK

In this paper, we introduced the overview of KCMTT.

There are many problems to be solved. This paper only provides
subject reduction/expansion and does not prove confluency and
strong normalization. We expect that proofs in previous work of
Kripke-style modal type theory may be helpful. Comparison be-
tween S4 KCMTT and the original CMTT is also necessary. We
expect that they have equal expressiveness, but otherwise the dif-
ference can be interesting. Davies and Pfenning[3] provide mutual
translation between S4 Kripke-style modal type theory and dual-
context modal type theory. This translation may help us to solve
the problem.
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Our goal is to construct a type system for syntactical metapro-
gramming such as macro system in Common Lisp [12] or Tem-
plate Haskell [10]. Although those implementations give a great
extensibility to programming languages, they are known not to be
type-safe. In other words, code with syntactic extension, even if
it is well-typed, may extend to ill-typed code. Therefore we want
a type system for syntactical metaprogramming that guarantees
type-safety of syntactic extension.

The basic idea of such metaprogramming is quasiquotation syn-
tax, which enables programmers to construct code. There are some
formal systems which provide Lisp-like quasiquotation such as
Kripke-style modal calculi [3] and linear temporal calculi [2]. How-
ever, they are not capable of binding manipulation: Kripke-style
modal calculi only treat closed code, and linear temporal calculi do
not allow access to free variables in open code. We think KCMTT
can be the basis for type system of syntactical metaprogramming
because it provides Lisp-like quasiquotation and allows access to
free variables in open code.

With comparison to CMTT, we think that KCMTT is preferable
as the type system for this purpose. First, it has quasiquotation con-
structs. Second, it is sufficiently weak as a logical system. We do not
need runtime code evaluation for syntactical metaprogramming. It
is known that the T axiom corresponds to runtime code evaluation,
and therefore we may omit assumption on the reflexivity. KCMTT
provides K and K4 variants, and we think those variants perceive
the nature of syntactical metaprogramming.
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