
Making Substitutions Explicit in SASyLF∗

Michael D. Ariotti & John Tang Boyland
Department of EE & Computer Science

College of Engineering and Applied Science
University of Wisconsin–Milwaukee

Milwaukee, Wisconsin, USA
{ariotti, boyland}@uwm.edu

ABSTRACT
SASyLF is an interactive proof assistant whose goal is to teach:
about type systems, language meta-theory, and writing proofs in
general. This software tool stores user-speci�ed languages and
logics in the dependently-typed LF, and its internal proof structure
closely resemblesM+

2 . This paper describes a new usability feature
of SASyLF, “where” clauses, which make explicit previously hidden
substitutions that arise from case analyses within a proof. The
requirements for “where” clauses are discussed, including a formal
de�nition of correctness. The feature’s implementation in SASyLF
is outlined, and future extensions are discussed.

KEYWORDS
SASyLF, proof assistant, education, uni�cation, LF,M+

2

1 INTRODUCTION
SASyLF [1] is an interactive1 proof assistant whose goal is to teach:
about type systems, language meta-theory, and writing proofs in
general. Originally designed and developed by Jonathan Aldrich
and others, it is currently maintained by John Tang Boyland, who
uses the assistant with students to teach courses on type systems.

To facilitate its purpose, SASyLF’s language is close to what
would be written in language descriptions and proofs on paper.
Furthermore, the errors it generates are as descriptive and local to
the cause as possible, often o�ering suggestions for correction.

Like its older brother Twelf [6], SASyLF stores logical infor-
mation in the dependently-typed LF [2]. Unlike Twelf, SASyLF’s
internal proof structure closely resemblesM+

2 [8]. SASyLF owes
much to these previous works.

The SASyLF user describes a language or logic via an abstract
syntax and a set of judgments, where each judgment is de�ned with
a form and a set of inference rules.

After an object language is thus described, the user can write the-
orems about its meta-theory. Each theorem is represented with the
form 8x1:�1.8x2:�2. · · · .8xn:�n .9�:� , and must be proven with
a total recursive function, de�ned by cases on the inputs—as de-
scribed by Schürmann [8].

For a given theorem, these inputs x1:�1,x2:�2, . . . ,xn:�n repre-
sent initial assumptions, forming a local context � to the theorem,
similar to how formal parameters are treated as local variables in a
∗The authors would like to thank the anonymous reviewers for their helpful comments.
1SASyLFwas not originally interactive. It has beenmade so through a plugin for Eclipse.
This plugin, along with the command-line version of the tool and the documentation
and source for both, are available at http://github.com/boyland/sasylf.

LFMTP 2017, September 2017, Oxford, UK

programmatic function. For a theorem to be applicable to the entire
object language, these inputs should be written with meta-variables.

Assumptions in SASyLF are represented in LF, and since LF is
dependently typed, often �i depends one or more previous inputs
x j:�j , where j < i . Thus, some inputs are syntactic constructs
(which have no dependencies), while others can be schematic judg-
ments on those constructs.

To prove a theorem, its proof-as-a-function must produce a
derivation d with the same LF type � as � for every possible set
of inputs. (Again like a programmatic function, only the type of
the output is enforced. The form of the LF term which has that
type, and the method of its creation, are in the hands of the proof
function.) The SASyLF proof-writer has the following techniques2
available for employ on the path to producing d :

(1) The construction of a derivation via application of (a) infer-
ence rules in the language description, (b) lemmas or theo-
rems proven prior to this one, or (c) this theorem, through
induction. The arguments to such an application must be
assumptions in the local context �. In the case of (c), the
arguments must be “smaller” than the current inputs, in a
technical sense familiar to those proving the termination of
recursive functions.

(2) The construction of a derivation via case analysis of a syntax
construct or derivation in scope. This technique is often ap-
plied to an input of the theorem, but a derivation constructed
in the proof can be a case analysis subject as well. Also, a
case analysis need not be the �nal construction of a proof;
the proof can continue after the analysis is �nished.

(3) For a theorem which allows hypothetical contexts—i.e., its
local context � can be assumed to contain other assumptions
than those explicitly listed as input—its proof is allowed to
extend � with further hypothetical assumptions, as opposed
to the explicit constructions described in (1) and (2), and (4).

(4) Related to (3), the construction of derivations through ma-
nipulation of the hypothetical context, taking advantage of
the fact that object variables are represented internally by LF
variables, via HOAS [5]: by weakening, by exchange, and
by substitution.

The semantics of proof by case analysis (2) is the subject of this
paper. In particular it will be shown, as it is by Schürmann [8], that
a case analysis represents a simultaneous substitution applied to all
assumptions in the context. Described here is a new feature of the
SASyLF language, “where” clauses, whichmakes these substitutions
explicit.

2Most of these correspond well to proof techniques described by Schürmann [8].

http://github.com/boyland/sasylf

LFMTP 2017, September 2017, Oxford, UK Michael D. Ario�i & John Tang Boyland

terminals lam dot value
true false if then else Bool

syntax

t ::= x | lam x:T dot t[x] | t t
| true | false | if t then t else t

T ::= T -> T
| Bool

Gamma ::= * | Gamma, x:T

Figure 1: An abstract syntax for �!B

In the simplest terms, a theorem is proven along a given branch
of its proof whenever some d:� 2 � (although, sometimes d has to
be explicitly pointed out). However, substitutions resulting from
case analyses can alter what � means. By extension, then, “where”
clauses can also make what remains to be provenmore transparent3.

The remainder of this section will describe an example language
which will motivate “where” clauses. Section 2 details the require-
ments for the feature, including when “where” clauses are correct,
and section 3 outlines an implementation to ful�ll them. Section
4 discusses limitations of the current implementation, along with
other avenues for future work.

1.1 An Example Language
Figure 1 shows the SASyLF description of the abstract syntax (in
familiar BNF) for the simply-typed �-calculus with the addition of
booleans4, �!B. Terminals of the language are listed explicitly for
the aid of the parser, and the student user. Terms t and types T are
de�ned. The notation t[x] appearing in the abstraction production
lam x:T dot t[x] means that object variable x may appear free
in term t, and is the very same variable bound in the abstraction.
To use variables, a syntax production must be provided for them.
Furthermore, a hypothetical context Gamma (although the name can
be di�erent) must be de�ned to contain free variables. Judgments
and theorems which refer to Gamma—the latter corresponding to (3)
in the previous section—do so explicitly, with assumes Gamma.

Figure 2 shows relationswritten as judgments in SASyLF, the �rst
describing the operational semantics, and the second describing
the type system, of �!B. Each judgment is given a name and a
form, followed by a set of inference rules, each of which de�nes an
instance of the judgment in its conclusion. The typing judgment in
particular depends on the hypothetical context Gamma, though only
T-Abs adds assumptions to Gamma in this language. The remainder
of the rules have been omitted for brevity.

3The �rst author used SASyLF as a student, and wrote “where” clauses as comments in
every proof for these stated bene�ts, even before SASyLF could parse or verify them.
4This example language is a reformulation of one from the original SASyLF paper [1],
in combination with languages from Pierce [7].

judgment eval: t -> t

----------------------------- E-IfTrue
if true then t2 else t3 -> t2

...

judgment typing: Gamma |- t : T
assumes Gamma

-------------------- T-True
Gamma |- true : Bool

Gamma |- t1 : Bool
Gamma |- t2 : T
Gamma |- t3 : T
---------------------------------- T-If
Gamma |- if t1 then t2 else t3 : T

Gamma, x:T1 |- t2[x] : T2
-------------------------------------- T-Abs
Gamma |- lam x:T1 dot t2[x] : T1 -> T2

...

Figure 2: Some evaluation and typing rules for �!B

1.2 A Proof Example
The proofs for the type soundness of this language—progress and
preservation—can be easily written in SASyLF, following those
written from Pierce [7]. In fact, many of the language meta-theory
proofs in Pierce’s book use only the techniques described in §1.

Figure 3 shows the beginning of a proof of type preservation for
�!B. There are two explicit inputs to the theorem, the derivations
d: Gamma |- t : T and e: t -> t’. There are also three implicit
inputs—t, T, and t’—which d and e depend upon. The arbitrary
hypothetical context Gamma is not an input to the theorem, but a
repository of hypothetical assumptions which may be extended
during the proof. An oddity in this theorem is that e does not men-
tion or assume Gamma, so in fact t and t’ do not depend on it. Some
proofs of preservation for the simply-typed �-calculus are written
for closed terms—d: * |- t : T in this SASyLF representation—but
writing the theorem with an arbitrary Gamma makes it easier to
apply.

The proof in Figure 3 begins by declaring it will use induction
on derivation d. Semantically this signi�es structural induction5,
which means that the user is allowed to apply the theorem being
proved, during its proof, to a subderivation of d with similar LF
type.

The proof proceeds via case analysis6 on d. When a case anal-
ysis is performed on a derivation, each the inference rules in the
language description which could have produced that derivation

5SASyLF has di�erent options to allow induction on multiple derivations at once, but
this �exibility is not needed here and is outside of the scope of this paper.
6The two lines use induction on d and proof by case analysis on d: could be
combined with the syntactic sugar proof by induction on d:.

Making Substitutions Explicit in SASyLF LFMTP 2017, September 2017, Oxford, UK

theorem preservation:
assumes Gamma
forall d: Gamma |- t : T
forall e: t -> t’
exists Gamma |- t’ : T.

use induction on d
proof by case analysis on d:
case rule
-------------------------- T-True
_: Gamma |- true : Bool

is
proof by contradiction on e

end case
case rule
d1: Gamma |- t1 : Bool
d2: Gamma |- t2 : T
d3: Gamma |- t3 : T
------------------------------------- T-If
_: Gamma |- if t1 then t2 else t3 : T

is
proof by case analysis on e:

case rule
-------------------------------- E-IfTrue
_: if true then t’ else t3 -> t’

is
proof by d2

end case
...

Figure 3: The beginning of a preservation proof for �!B

must be addressed with a case. Here, d is a typing derivation, so all
of the language’s typing rules potentially provide cases. Since the
term and type mentioned in d are written without any particular
form, any typing rule could apply7. Many of these cases lead to an
immediate contradiction (such as the T-True case shown), because
of derivation e, also present in the context. This derivation says
t must evaluate, so cases where t is a normal form—such as an
abstraction or true—do not apply to the proof. SASyLF does not
“look ahead” in any part of the proof, however, and these normal
form cases must still be written out.

In the case for T-If, t is the if-expression if t1 then t2 else
t3 (not a normal form), where t1, t2, and t3 are new terms in the
context, with types given by the premises of the rule case. (These
premises are added to the context as well.) Unlike t, the rule case
does not impose any further restrictions on T; the meaning behind
these restrictions are discussed in §2.

The proof immediately proceeds with a case analysis on e, the
evaluation derivation. Again, a case must appear for every evalua-
tion inference rule that applies. But the t in e: t -> t’ has changed
since the theorem began. It can no longer be any term, it must have
the form if t1 then t2 else t3. As a result, not all the evaluation

7With the possible exception of T-Var (not shown), depending on how it is written.

rules could have produced e here; from Pierce [7], the rules which
apply are E-IfTrue, E-IfFalse, and E-If.

The proof shows the case for the �rst of the three rules, and
completes the proof of that case in a single step. Notably, none
of the techniques from §1 are used. This is because the required
derivation is already in the context; it just needed to be pointed
out.

It may not be clear why derivation d2 proves this case. The
theorem requires that t’ has type T, but d2 gives the type of t2.
But term t2 became t’ in the inner rule case, E-IfTrue. This was
required for e to match—i.e., to unify with—the conclusion of the
original rule E-IfTrue in Figure 2.

This lack of clarity—of just what exactly needs to be proven,
and how to get there—stems from the various substitutions going
on “under the hood” of the proof. “Where” clauses, detailed in the
remainder of this paper, bring these substitutions to light.

1.3 A Where Clause Example
Figure 4 shows the same SASyLF proof segment with “where”
clauses added. The single clause for the rule case T-If is not sur-
prising: if rule T-If provides the type for t, then t must be an
if-expression. The evaluation rule E-IfTrue, however, describes
a particular evaluation which imposes further restrictions on t,
and notably relating t2 and t’. The added “where” clauses make
these restrictions clear. From them it can be seen that all previous
derivations that mention t’ are also talking about t2, and vice
versa.

Thus, “where” clauses are a usability feature which require im-
plicit information to be made explicit, for the sake of learning how
to write proofs. As such, they align with SASyLF’s original design
philosophy.

Coq [3] (along with other tactic-based proof systems) generate
some relevant substitutions from an inversion or induction and
make them visible during the interactive proof process. Unlike
this extension of SASyLF, such systems typically do not leave this
information in the proof script stored with the proof.

2 DEFINING CORRECTNESS
These examples have been written to be as clear as possible. In the
wild, the user can write proofs in many correct ways. The burden is
on SASyLF to judge between what is dubious (and try to nudge the
user in a better direction), and what is just wrong (and tell them to
try again).

What does it mean for a “where” clause to be correct? It turns
out this is closely related to what it means for a case analysis to be
correct, and the latter is really three questions:

(1) Which cases apply?
(2) Have all cases been covered?
(3) Are the cases which need to be addressed written correctly

in the proof?

Answering these questions requires a more formal presentation
of SASyLF’s internals than has been given so far, and will lead to
how to determine “where” clause correctness.

LFMTP 2017, September 2017, Oxford, UK Michael D. Ario�i & John Tang Boyland

theorem preservation:
assumes Gamma
forall d: Gamma |- t : T
forall e: t -> t’
exists Gamma |- t’ : T.

use induction on d
proof by case analysis on d:
case rule
-------------------------- T-True
_: Gamma |- true : Bool
where t := true

and T := Bool
is
proof by contradiction on e

end case
case rule
d1: Gamma |- t1 : Bool
d2: Gamma |- t2 : T
d3: Gamma |- t3 : T
------------------------------------- T-If
_: Gamma |- if t1 then t2 else t3 : T
where t := if t1 then t2 else t3

is
proof by case analysis on e:

case rule
-------------------------------- E-IfTrue
_: if true then t’ else t3 -> t’
where t1 := true

and t2 := t’
is
proof by d2

end case
...

Figure 4: Where clauses added to the proof segment

2.1 LF Representation
In LF terms, the object language description consists of term con-
structors c and type constructors a, both LF constants. The syntax
declaration

t ::= x | lam x:T dot t[x] | t t
| true | false | if t then t else t

corresponds to the LF declarations8

at :: type ctrue : at
clam : aT ! (at ! at)! at cfalse : at

capp : at ! at ! at cif : at ! at ! at ! at

There is no constructor for variables x; SASyLF simply associates
the name pre�x x with the syntax type at. (Of course, this is en-
tirely separate from the object typing system, which is internally

8The arrow! is used here, and in the example type constructor aeval , because there
are no dependencies between the types of the inputs. In general, �-notation is needed
to describe LF types and kinds which are functions.

represented as LF dependent types.) In more general terms, a SA-
SyLF syntax declaration creates a type constructor a of LF base
kind type, along with a term constructor ci for every non-variable
production i .

A judgment declaration � , on the other hand, creates a type
constructor a � which is typically not kind type, because the form
of a judgment usually contains meta-variables. For example, the
judgment eval: t -> t creates the constructor

aeval :: at ! at ! type

A SASyLF inference rule R is stored as
ai {�}i :: type aj {�}j :: type . . .

a � {�}� :: type
R

where a � in the conclusion matches the type constructor in the
judgment declaration. If R has any premises (many inference rules
do not), they are also instances of judgments, and not syntax con-
structs on their own. Each set {�} represents a full list of arguments
to its type constructor, hence each derivation has kind type. The
constructors for the premise and conclusion derivations need not
be di�erent (which would correspond to mutually dependent rela-
tions). In fact, they are often all the same, as is the case for both
the typing rules with premises in Figure 2; in each rule, both the
premise(s) and the conclusion have constructor atyping. The omit-
ted evaluation rules for �!B which contain premises would be
similar.

2.2 Case Analysis Correctness
As mentioned in §1, a SASyLF theorem, together with its proof, is
internally represented as a function. A theorem has inputs x1:�1,
x2:�2, . . . , xn:�n contained in a local context �, and an output type
� .

A case analysis can be performed on any single syntax construct
or derivation d 2 �. A case analysis also has an output derivation
type � 0 which need not be the same9 as � ; if di�erent, the proof
will continue after the case analysis is �nished.

When performed on a derivation10 d : a � {�}d , the cases which
need to be covered are all inference rules in the language description
whose conclusions unify with a � {�}d . These rules represent all of
the possible �nal steps in the derivation (or proof) of a � {�}d . In
general, the context of the case analysis may already imply some
substitutions � as explained presently; these are applied to the
derivation’s type before uni�cation.

De�nition 2.1 (Case Analysis Subject)
Let d : a � {�}d 2 � be a derivation on which a case analysis is
performed in a SASyLF theorem. Let � be a set of substitutions in e�ect
at the location of the case analysis. Then the application � (a � {�}d)
is referred to as the case analysis subject (CAS).

It is possible that the derivations in an inference rule R, as they
are written by the user, share free variable names with the CAS.
Such name clashes carry no semantic meaning, but could interfere
9All of the case analyses in the example preservation proof begin with proof by case
analysis. The keyword proof is syntactic sugar for spelling out a derivation with
the output type for the theorem, such as _: Gamma |- t’ : T for the one in Figure 3.
10Of course, a case analysis can be performed on a syntax construct as well, such as
t or T from �!B. Syntax case analyses are outside the scope of this paper, because
where clauses for them would be trivial and redundant.

Making Substitutions Explicit in SASyLF LFMTP 2017, September 2017, Oxford, UK

with uni�cation, and so should be avoided. To check whether R
needs to be addressed in a case analysis on d then, a copy Rf should
be should be made of R which contains only fresh11 free variables.
If Rf ’s conclusion is a � {�}f , then R must be addressed if there
exists a (uni�er) substitution �d such that

�d (a � {�}f) = �d (� (a � {�}d)) (1)

In general, unifying withRf ’s conclusion will impose restrictions
on the free variables of the CAS; these are implied by supposing
that the CAS’s proof �nishes via R. It is possible that the CAS is
also more speci�c in some ways than the conclusion of Rf . Thus,
such a uni�er �d is not always one-directional.

De�nition 2.2 (Case Analysis Completeness)
Let � (a � {�}d) be the CAS of a rule case analysis with output type
�

0. Let Rf be a “fresh” copy of inference rule R, such that no variable
names are shared between Rf and the CAS.
The rule case analysis is complete if:

(i) Every rule R is addressed within, such that the conclusion of
its fresh version Rf uni�es with the CAS.

(ii) The proof function produces a derivation with type � 0 within
each case.

It is possible that no “fresh” rule conclusions unify with a � {�}d ;
this means that the complete case analysis has no cases. This is what
occurred in the rule case T-True in Figure 3. In SASyLF, proof by
contradiction on e is syntactic sugar for an empty case analysis
on e. ⌅

This de�nition answers questions (1) and (2) from the beginning
of this section. What about question (3)? When is a rule case itself
written correctly? As it turns out, there aremanyways towrite them
incorrectly—that is, in such a way as would introduce unsoundness
into the proof.

De�nition 2.3 (Rule Case Conclusion)
Suppose a uni�er �d exists for fresh version Rf of inference rule R,
satisfying equation (1). Given a user-written rule case R0 addressing
rule R, the conclusion of R0 is referred to as the rule case conclusion
(RCC).

To be sure that R0 is sound, �d must not map any free variables
of the RCC. The substitution �d can be altered to comply, if it does
not already, in a process described in §3.1. But if �d cannot be made
to comply with this requirement, this means that the RCC includes
free variables which �d is about to substitute away, and this is an
error.

Given a rule caseR0 and uni�er�d which do not exhibit this error,
a correct rule case for R in a case analysis on d can be computed
with �d (Rf)—that is, Rf with �d applied to all of its premises and
conclusion. For a user-written rule case R0 addressing rule R to be
correct, then, it must be written in exactly the same way as �d (Rf),
except that free variables can be renamed from one to the other in
a one-to-one fashion.

De�nition 2.4 (Rule Case Correctness)
Let R0 be a user-written rule case addressing rule R in a case analysis.
Let �d be a uni�er of the CAS and the conclusion of fresh version Rf
11An easy way to obtain such variables is to create names for them which the user
cannot write.

of R.
The rule case R0 is correct if:

(i) None of the free variables of the RCC are mapped by �d .
(ii) There exists a “bijection” uni�er

�c = {u1 7! w1,u2 7! w2, · · · ,um 7! wm }
such that

R

0 = �c (�d (Rf)) (2)
where every ui is a free variable in �d (Rf) andwi is the cor-
responding free variable in R0.

(iii) The free variableswi in the codomain of �c do not share names
with other members of the local context �. (This would imply
relationships between R

0 and those members which may not
be sound.)

The meaning behind the bijection uni�er �c is that a correctly-
written rule case R0 represents exactly the level of restriction on the
free variables of the CAS which is required by supposing inference
rule R is the last rule applied in the CAS’s proof.

If a uni�er �c exists, but it is not a bijection, it is either because
R

0 is “too general” (it does not impose enough restrictions on the
free variables of the CAS), or because R0 is “too strict” (it imposes
too many). The former occurs if R0 contains free variables which
are not needed—that is, they stand for elements of �d (Rf) which
are already known to be more speci�c than the variable chosen.
This includes when multiple free variables in R

0 are used to stand
for a single free variable in �d (Rf). On the other hand, R0 is “too
strict” when a free variable should have been used in R

0, to allow
�exibility in what the variable stands for in �d (Rf), but it was not.
This includes when the same variable is used twice in R

0, when
two di�erent variables should have been used. If R0 is too strict, an
error is generated; if too general, a warning. Both possibilities can
occur in one incorrectly written rule case; if this occurs, SASyLF
reports the error.

If no uni�er �c exists at all between Rf and R0, then rule case R0
does not address inference rule R, and SASyLF asks the user to try
again. ⌅

This de�nition of correct rule cases sheds light on the nature of
the substitutions which arise from them.

Suppose rule case R0 is written correctly to address inference rule
R, and so a bijection uni�er �c exists. By equation (2), considering
only the conclusions of R0 and �d (Rf), the RCC can be described as

RCC = �c (�d (a � {�}f)) (3)

where a � {�}f is the conclusion of Rf . Equations (1) and (3) then
combine to form

RCC = �c (�d (� (a � {�}d))) = (�c � �d)(� (a � {�}d)) (4)

Recall that � (a � {�}d) is none other than the CAS.

De�nition 2.5 (Rule Case Substitutions)
The set of substitutions imposed by a correctly written rule case R0

whose conclusion satis�es equation (4) is

�u
�
= {� 7! �� } ✓ (�c � �d)

where each � is a free variable of the CAS, is a one-way uni�er from
the CAS to the RCC.

LFMTP 2017, September 2017, Oxford, UK Michael D. Ario�i & John Tang Boyland

This uni�er �u represents the restrictions imposed on free vari-
ables � of the CAS as a consequence of addressing inference rule R
particularly with rule case R0. The composition �c ��d may contain
mappings from free variables of Rf , but these are irrelevant to the
uni�cation of the RCC and the CAS, and by extension the remainder
of the proof; because of this, these mappings are not included in
�u .

The restrictions described by �u do not only a�ect the CAS;
they a�ect every member of the local context � containing free
variables in �u ’s domain. In essence, �u = {� 7! �� } instantiates
all appearances of every free variable � across members of � with
the more speci�c expression �� ; as a consequence, the �’s should
“disappear” inside the scope of rule case R0.

Furthermore, this substitution e�ect is cumulative with succes-
sive, nested case analyses. If a case analysis is performed inside the
�rst, another uni�er � 0u is exists for each case, and �

0
u is applied

to all elements of �u �. In other words, inside the inner case, the
substitution �

0
u � �u is applied to all elements of �.

De�nition 2.6 (Local Context Substitutions)
Let � be the initial local context of a SASyLF theorem (i.e., the theo-
rem’s inputs). At a location L of the theorem’s proof, assume

�

k
u , · · · ,� 2

u ,�
1
u

are substitutions imposed by k nested case analyses whose syntactic
context encompasses L, where � 1

u represents the substitution for the
case at outermost scope. These nested case analyses imply a succession
of composed uni�ers

�

�
= �

k
u � · · · � � 2

u � � 1
u (5)

which is applied to each member of �, as well as to any new member
of the local context which yet remains.

Therefore, � as it appeared in equations (1) and (4) represents the
successive composition of substitutions implied by all cases, or other
statements (such as inversions) that cause variable substitution,
whose syntactic context encompasses rule case R0.

The presence of such outer-scope substitutions is why, for ex-
ample, the inner case analysis on e in Figure 3 requires cases only
for rules E-IfTrue, E-IfFalse, and E-If, and not for all of the
evaluation rules of �!B. ⌅

It is noted above that the RCC must not mention any free vari-
ablesmapped by�d . Furthermore, the existence of a bijection uni�er
�c as de�ned above implies that the RCC does not mention any
free variables mapped by �c , either. Additionally, the RCC must not
reuse any free variables mapped by � ; if it does, this is always an
error, for � cannot be altered.

In summary, following are the requirements for a correct rule
case analysis, written as answers to the questions posed at the
beginning of the section. In accordance with the observation above,
a substitution � is assumed to be in e�ect due to (enclosing) case
analyses currently in scope; � = ú at the outset of a proof. Also
assume a local context �. Finally, assume the subject of the case
analysis is derivation d : a � {�}d 2 �, and the output of the case
analysis is of type � 0.

(1) An inference rule R (as opposed to syntax productions, for
a syntax case analysis) applies to the case analysis if the

conclusion of a “fresh” version Rf uni�es with � (a � {�}d)
via uni�er �d .

(2) All cases are covered when each rule from (1) has a correctly
written rule case, followed by the production of the target
derivation being proved by the case analysis.

(3) A rule case R0, addressing inference rule R, is written cor-
rectly if:

(a) There exists a “bijection” uni�er �c which maps free vari-
ables of �d (Rf) to free variables in R

0. The codomain of
�c must be disjoint from �.

(b) The conclusion of R0 (the RCC) does not mention any free
variables which have been substituted away by enclosing
cases, including R0 itself. That is,

RCC = � (RCC) = �d (RCC) = �c (RCC)
To show the meaning of requirement (3b), consider the RCC for

the inner rule case T-If in Figure 3
_: if true then t’ else t3 -> t’

If this RCC had been written either as
_: if true then t2 else t3 -> t’

or as
_: t -> t’

neither would satisfy this last requirement. The term t was sub-
stituted away in an outer case (via �), while t2 is about to be
substituted away in this case (via �u ✓ �c � �d).

Interestingly, requirement (3) allows the user to rename free
variables of the CAS when writing the RCC, as long as the new
names are not already members of �.

2.3 Where Clause Correctness
Before correctness for “where” clauses is de�ned, it is important
to note that unlike case analysis correctness, “where” clauses have
no e�ect on the semantics or soundness of the proof in which
they appear. That is, if correctness for these clauses is incorrectly or
insu�ciently de�ned or implemented, the soundness of current and
future SASyLF proofs are not a�ected. An exception to this is the
inversion construct; “where” clauses associated with inversions
could have semantic e�ect on the remainder of the proof. For now,
“where” clauses for inversions are left to future work.

The notion of “where” clauses bene�ts from the more formal de-
scription of case analyses in the previous section. Speci�cally, these
clauses must be written to make explicit the restrictions imposed by
substitutions � . There are several considerations which complicate
the requirements for “where” clauses. They are addressed in the
following sections.

2.3.1 Nested Case Analyses.
For a single case analysis, there is only one �u in the composition � .
For nested case analyses, however, there are multiple substitutions
in play; which should correct “where” clauses represent? Looking
back at the de�nition of � (5), there are two viable options.

The clauses could represent the full substitution� . However, they
are more succinct if they describe only �

k
u , the last substitution

imposed by a case. In other words, the latter version of “where”
clauses describes only the most recent restrictions, as opposed to
repeating old information. Thus, this more succinct version is the

Making Substitutions Explicit in SASyLF LFMTP 2017, September 2017, Oxford, UK

(<CASE> <RULE>
(<ID> �:� <EXPR>)* // premises

<BAR>
<ID> �:� <EXPR> // conclusion
(<WHERE> <LHS> �:=� <RHS>

(<AND> <LHS> �:=� <RHS>)*)?
<IS>

(<DERIVATION>)+ // continuation of proof
<END> <CASE>)*

Figure 5: The abstract syntax of cases in a rule case analysis,
including the addition of “where” clauses

one implemented in the new version of SASyLF. For example, the
nested case E-IfTrue in Figure 4 could have (only) the clause

where t := if true then t’ else t3

which re�ects the entire composition � of substitutions for this rule
case; but it is more useful to require clauses that represent only the
newest mappings:

where t1 := true and t2 := t’

2.3.2 SASyLF Syntax.
Chief among remaining considerations is how correct “where”
clauses should �t into SASyLF’s abstract syntax, including the form
of the clauses themselves. In Figure 4, they immediately follow an
RCC and precede is; this syntax is generalized12 in Figure 5. This is
the ideal location for the clauses in the code, because they describe
substitutions which occur as a result of the RCC; in particular, the
right-hand sides of the clauses must all appear in the RCC. Further-
more, the “where” clauses are listed just before the section of the
proof a�ected by the substitutions they describe, similarly to way
“let”-bindings appear in other languages.

2.3.3 Familiarity.
Another consideration is that “where” clauses must only ever list
variables and expressions which have already been seen in the proof
text. They must never introduce anything new; the clauses should
decrease confusion, not increase complexity. ”Where” clauses are in-
tended to describe �u = {� 7! �� }, where the �’s are free variables
in the CAS. Therefore, the left- and right-hand sides (<LHS>, <RHS>)
of a correct clause must correspond to the “unparsed” (concrete
syntax) versions of LF expressions � and �� , respectively.

2.3.4 First- vs. Second-Order Le�-Hand Sides.
For �rst-order “where” clauses, the left-hand side must simply be
the concrete name represented by � . SASyLF includes support for
second-order13 (and no higher) free variables, and “where” clauses
describing substitutions on them are slightly more verbose. Figure 6,

12The syntax shown in Figure 5 is adapted and (greatly) simpli�ed from SASyLF’s
parsing speci�cation.
13SASyLF stands for Second-order Abstract Syntax Logical Framework.

lemma substitution-preserves-typing:
assumes Gamma

forall d1: Gamma |- t1 : T1
forall d2: Gamma, x:T1 |- t2[x] : T2
exists Gamma |- t2[t1] : T2.
proof by induction on d2:

case rule
----------------------------- T-True
_: Gamma, x:T1 |- true : Bool
where t2[x] := true
and T2 := Bool

is
proof by rule T-True

end case
...

Figure 6: A lemma with second-order free variables

showing the beginning of a familiar lemma14, also shows a simple
second-order “where” clause:

where t2[x] := true

Whenever a second-order free variable � appears in SASyLF’s
syntax, it is immediately followed by explicit arguments, each en-
closed in []. At the object language level, if such an argument is a
bound variable x, it acts as a visual marker that the bound variable x
may be free in the object term represented by� (as described in §1.1).
Internally, this [] notation is represented with an LF application
with� at the head. The left-hand side of�’s “where” clause must list
�’s arguments as they appear in the CAS, modulo �-equivalence of
the whole clause and the original mapping � 7! �� . In the above
example, it would be inaccurate to allow

where t2 := true

letting the [x] be forgotten.
For a less simple example, suppose the LF mapping

t2 7! ��:at.(clam T1’ �z:at.(t21 � z))
is present in �u for a given rule case15. Then

where t2[x] := lam x’:T1’ dot t21[x][x’]

is a correct “where” clause representing this mapping. By �-equiv-
alence,

where t2[x’] := lam x:T1’ dot t21[x’][x]

is also correct, but
where t2[x] := lam x’:T1’ dot t21[x’][x]

is not, because this right-hand expression is not the same as the LF
expression above (t21 z � is not the same as t21 � z, all else being
equal). Neither is

where t2[x] := lam x:T1’ dot t21[x][x]

correct, because the LF bound variables in the mapping are distinct.

14The so-called “substitution lemma” [7] is not actually required to prove complete
type preservation for �!B in SASyLF; the by substitution construct may be used
instead.
15This could occur in the substitution lemma, in the case for rule T-Abs (not shown).

LFMTP 2017, September 2017, Oxford, UK Michael D. Ario�i & John Tang Boyland

2.3.5 Optional Presence.
A �nal consideration regarding “where” clause correctness is that
their presence in the code must be optional. Proofs for complex
object languages can be lengthy, with many nested case analyses;
not every “where” clause in these proofs may be helpful, especially
for the advanced user writing them. For novice users, however,
being forced to write correct “where” clauses is a boon. For these
users, writing the clauses demonstrates their understanding of the
substitutions they describe, and having this information visible in
the code makes continuing the proof more straightforward.

2.3.6 Summary of Requirements.
In summary, given a set of substitutions � in e�ect at the beginning
of a case analysis, a (correct) rule case R0 in that analysis, and a set
of new restrictions �u imposed by R

0, “where” clauses for R0 are
correct if:

(1) Each clause represents a distinct mapping in �u , instead of a
mapping from the combined substitution �u � � .

(2) The left-hand and right-hand sides of a clause representing
a mapping (� 7! ��) 2 �u must be the concrete syntax
representations of LF expressions � and �� , respectively.
For second-order free variables � , a list of arguments each
enclosed in [] must follow �’s name on the left-hand side.
Clauses representing mappings �-equivalent to � 7! �� are
allowed.

In addition, incorrectly written “where” clauses must always yield
errors, but mappings in �u which lack clauses should only yield
errors if an option making the clauses mandatory is enabled.

3 IMPLEMENTATION
Much of the infrastructure needed to verify “where” clauses was
already present in the SASyLF system prior to the feature’s addi-
tion. This includes LF-expression uni�cation16 and case analysis
veri�cation.

3.1 Rule Case Veri�cation
Case analysis veri�cation in SASyLF includes tracking and applying
CAS-RCC uni�ers �u to members of contexts � as necessary. To
accomplish this, SASyLF parses an abstract syntax (sub)tree (AST)
from a theorem and proof in the source, which is traversed in depth-
�rst fashion, visiting children in the order they appear in the source.
The root of proof subtree P is associated with an empty substitution
� . Every case analysis in the proof represents a subtree of P . When
a case node is entered, a new substitution � �u � � is created
for that node. After veri�cation on the case node is complete, its
parent’s � is restored. When x:� 2 � are accessed at any node
of the proof, the � associated with that node is applied to � �rst.
All of this machinery was in place before “where” clauses were
conceived; these substitutions play a critical role in SASyLF’s proof
veri�cation process.

A side e�ect of adding the new feature to SASyLF was looking
more closely at this implementation; the results of this research
are summarized in §2.2. Errors were found in the veri�cation of
rule cases, in particular relating to the use of free variables. Prior to

16SASyLF implements Nipkow’s uni�cation algorithm [4], with additional conservative
heuristics for unifying non-pattern applications.

this work, cases which were “too general” or which included free
variables about to be substituted away sometimes went undetected.

Following is a description of the of new process for rule case ver-
i�cation, which refers to the work in §2.2. For this process, assume
that once an error is reported, the procedure is �nished; further
errors are not sought. When verifying a rule case R0 addressing
inference rule R, the �rst step is to check that R0 = � (R0), where
� is the composition of substitutions in e�ect at the outset of the
case analysis. If this equality fails, the error is reported.

Next, �d is computed by unifying the CAS (to which � has al-
ready been applied) and the conclusion of a fresh instance Rf of the
rule R. If this uni�cation fails, it is reported that R0 is unnecessary.
Otherwise, �d is “rotated” to preserve (not map) free variables of
the RCC (the conclusion of R0).

This rotation of a substitution is generalized in an algorithm
called S�����U����������. This algorithm takes as input a substi-
tution � and a set of free variables V . Each free variable � 2 V is
checked if it can be “avoided” by �—i.e., removed from the domain
of � , if present there. For each � . this is possible (1) if � is not in
the domain of � to begin with, or (2) if � (�) = �� is �-equivalent
to a free variable z < V . In the latter case, the mapping � 7! �� is
“rotated” to become z 7! � , altering � as a side e�ect. This rotation
is nontrivial in general, and can a�ect the other mappings in � via
composition with the new one. After all � 2 V have been checked
in this way, the algorithm returns a set of free variables S ✓ V ,
those which could not be avoided.

The speci�c rotation of�d above is achieved by gathering the free
variables of the RCC into a set V and executing S�����U�������
����(�d ,V). If the resultant set S is not empty, R0 is unsound. Oth-
erwise, the substitution �d resulting from this operation is applied
to produce the correct rule case candidate �d (Rf). Uni�cation is
attempted with this candidate and R0. If it fails entirely, R0 does not
correctly address R. If a uni�er �c is found, S�����U���������� is
executed on it twice to establish a bijection (the order of the two
executions matters): �rst avoiding the free variables of Rf , then
avoiding the free variables of R0. If the resultant set S from the �rst
execution is non-empty, then R

0 is “too strict.” If S from the second
execution is non-empty, then R

0 is “too general.” If both executions
return empty sets, the codomain of �c is intersected with the local
context �; if the result not ú, an error is generated. Otherwise, R0
is correctly written, and �u is the set of all mappings in �c � �d
which act on free variables of the CAS.

3.2 Where Clause Veri�cation
To verify “where” clauses, the new version of SASyLF parses each
of the user-written clauses into two LF expressions (the left and
right sides). It then matches them, via LF expression equality, to
mappings in �u . (If the rule case is not correct and �u does not exist,
“where” clauses for that case are not veri�ed.)

For second-order “where” clauses, arguments in [] are parsed
from the left-hand side into a list of variable bindings; these are
made available when parsing the right-hand side, as if bound on
that side. The user’s right-hand LF expression is then wrapped with
lambda abstractions corresponding to the left-hand arguments;
the last argument forms the �rst wrapping, and so on. The right-
hand side is then veri�ed via LF expression equality just as with a

Making Substitutions Explicit in SASyLF LFMTP 2017, September 2017, Oxford, UK

�rst-order clause, and �-equivalence is allowed. If the user gives
non-variable arguments, not enough arguments, or too many, ap-
propriate errors are given. A special error is generated if there are
arguments on the left-hand side of a �rst-order clause.

4 FUTUREWORK
The primary avenue for future work with “where” clauses should
be usability testing with actual users, preferably students learning
to use SASyLF and to write sound proofs. The feature seems worthy
of inclusion (and has led to many interesting subproblems and bug
�xes), but it is not currently known whether student users will �nd
“where” clauses helpful or obtrusive.

4.1 Current Limitation
There is one major limitation to the current “where” clause imple-
mentation: SASyLF does not verify “where” clauses when changes
occur in the hypothetical context from a CAS to the RCC. This is
due the way these contexts are internally represented, via additional
abstractions wrapped around an LF expression in the context. There
are potential plans to revamp this representation, which would also
change the way these clauses are handled.

4.2 Extensions
The new version of SASyLF parses the user’s “where” clauses to
LF, and veri�es them at that level. An extension of this feature is
to produce the concrete clauses internally and insert them into the
user’s code; this can be accomplished with an Eclipse “Quick Fix”
option. The cases for a case analysis can already be generated and
inserted in this way, which is similar to a feature described in the
original SASyLF paper [1].

Another extension for “where” clauses lies with inversions, a
feature in SASyLF which allows the proof-writer to perform a case
analysis with exactly one applicable case in-line. This construct
immediately alters the local substitution � , and this alteration re-
mains in e�ect until the end of the given case in a proof. In this way,
the inversion construct behaves similarly to a “let” construct in
other languages. Because of the alterations to � , inversions should
include “where” clauses just as rule cases do. In fact, the clauses may
be even more important for inversions, since they do not explicitly
list an RCC in their syntax.

5 CONCLUSION
“Where” clauses in SASyLF provide a means of making previously
hidden substitutions in a proof explicit to the user. These substi-
tutions represent restrictions that occur when answering a case
in a case analysis, and have a pervasive e�ect on the remainder
of the proof within that case. Making these substitutions explicit
should make learning to write proofs with the assistant easier for
student users, and thus aligns with SASyLF’s education-focused
design philosophy.

REFERENCES
[1] Jonathan Aldrich, Robert J Simmons, and Key Shin. 2008. SASyLF: An educa-

tional proof assistant for language theory. In Proceedings of the 2008 international
workshop on Functional and declarative programming in education. ACM, 31–40.

[2] Robert Harper, Furio Honsell, andGordon Plotkin. 1993. A framework for de�ning
logics. Journal of the ACM (JACM) 40, 1 (1993), 143–184.

[3] The Coq development team. 2016. The Coq proof assistant reference manual. Log-
iCal Project. http://coq.inria.fr Version 8.6.1.

[4] Tobias Nipkow. 1992. Functional Uni�cation of Higher-Order Patterns. In Pro-
ceedings of Sixth International Workshop on Uni�cation Schloss Dagstuhl, Germany.
77.

[5] F. Pfenning and C. Elliott. 1988. Higher-order Abstract Syntax. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation (PLDI ’88). ACM, New York, NY, USA, 199–208. https://doi.
org/10.1145/53990.54010

[6] Frank Pfenning and Carsten Schürmann. 1999. SystemDescription: Twelf-AMeta-
Logical Framework for Deductive Systems. In Proceedings of the 16th International
Conference on Automated Deduction. Springer-Verlag, 202–206.

[7] Benjamin C Pierce. 2002. Types and programming languages. MIT press, Cam-
bridge, Massachusetts, USA and London, England.

[8] Carsten Schürmann. 2000. Automating the Meta Theory of Deductive Systems.
Ph.D. Dissertation. School of Computer Science, Carnegie Mellon University.

http://coq.inria.fr
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010

	Abstract
	1 Introduction
	1.1 An Example Language
	1.2 A Proof Example
	1.3 A Where Clause Example

	2 Defining Correctness
	2.1 LF Representation
	2.2 Case Analysis Correctness
	2.3 Where Clause Correctness

	3 Implementation
	3.1 Rule Case Verification
	3.2 Where Clause Verification

	4 Future Work
	4.1 Current Limitation
	4.2 Extensions

	5 Conclusion
	References

