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ABSTRACT
The original presentation of uniform ordered linear logic does not

permit direct implementation (in Olli) as a meta-circular interpreter.

We explain the difficulty and present a new formulation of the logic,

called uniform atomic ordered linear logic which does allow a direct

transcription into a meta-circular interpreter. We prove the new

system sound and complete with respect to the old; and we exhibit

a meta-circular interpreter for Olli.
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1 INTRODUCTION
Ordered linear logic (OLL) [10] is a conservative extension of intu-

itionistic linear logic (ILL) with an ordered context in which none

of the standard three structural rules apply; i.e., ordered hypotheses

cannot be exchanged, copied, or deleted. As with ILL, the uniform

(focussed and goal-directed) [1, 8] fragment of OLL can be turned

into a logic programming language (called Olli) [9], as well as serve

as the basis for a logical framework [11].

However, unlike uniform ILL [6], the presentation of uniform

OLL (UOLL) in [10] does not allow full logical compilation [2].

While unrestricted and linear hypotheses can be residuated, or

logically compiled into new goal formulae, ordered hypotheses were

resistant to such transformation. In addition to being an aesthetic

wart on the logic, the inability to residuate ordered hypotheses

prevents constructing a meta-circular interpreter for Olli which

directly uses the ordered context of the logic.

The problem with residuating an ordered hypothesis ultimately

boils down to the fact that its position in the context–which ordered

formulae are on either side of it– is lost when residuating to a new

goal formula. In this paper we overcome the position problem by

transforming ordered hypotheses into linear hypotheses whose po-

sitions are explicitly represented by atomic placeholder predicates

which will occur as ordered hypotheses. The resulting system, uni-

form atomic ordered linear logic (UAOLL), has a demoted ordered

context containing only placeholders.
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In this paper, we present UAOLL and prove soundness and com-

pleteness with respect to UOLL. Since there are no ordered formulae

to residuate, we can achieve full logical compilation for UAOLL

by using the residuation previously shown for UOLL. Finally, we

transcribe the inference rules for residuated UAOLL into Olli to get

a meta-circular interpreter.

The rest of this paper proceeds as follows: section 2 gives a

brief review of OLL; section 3 presents UOLL; section 4 reviews

residuation for unrestricted and linear UOLL hypotheses; section

5 explains why residuation does not work for ordered hypothe-

ses; section 6 describes our solution for not needing to residuate

ordered hypotheses; section 7 presents UAOLL; section 8 gives a

proof of the correctness of UAOLL with respect to UOLL; section 9

adds residuation to UAOLL; section 10 presents our meta-circular

interpreter for Olli; section 11 offers some conclusions and thoughts

on further work.

2 ORDERED LINEAR LOGIC
In this section we present a brief overview and reconstruction of

OLL; see [10] for an in depth presentation of this material. This

section is included for context as the technical starting point for

UAOLL (presented in section 7) is UOLL (presented in section 3).

2.1 Purely Ordered Fragment
We shall start with a simple purely ordered logic, whose formulas

are:

A ::= P | A � A | A � A

where P represents atomic formulae, � is right implication and

� is left implication. There are two implications because there are

two well-defined places to put a hypothesis, i.e., at either end of

the context.

We specify the valid derivations of the logic with the following

judgment:

Ω ⊢ A

where Ω is a context defined by:

Ω ::= · | Ω,A

Wewill abuse , to both add a formula to a context, at either end, and

to append two contexts together. The logic is then characterized by

the following derivation rules:

A ⊢ A
init

Ω,A ⊢ B

Ω ⊢ A � B
�R

ΩL ,B,ΩR ⊢ C ΩA ⊢ A

ΩL ,A � B,ΩA,ΩR ⊢ C
�L
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A,Ω ⊢ B

Ω ⊢ A � B
�R

ΩL ,B,ΩR ⊢ C ΩA ⊢ A

ΩL ,ΩA,A � B,ΩR ⊢ C
�L

Note that this logic is a reformulation of Lambek calculus [7].

2.2 Adding Linear Hypotheses
We now add linear hypotheses to the logic by adding a linear con-

text, ∆, which will admit exchange, i.e. the order of hypotheses will

not matter. We add linear implications to the formula language:

A ::= P | A � A | A � A | A ( A

and a linear context, ∆, to the judgement:

∆ ; Ω ⊢ A

We use ◃▹ to denote non-deterministic context merge; i.e., ∆L ◃▹ ∆R
denotes any merging of contexts ∆L and ∆R , we will also write

∆ ◃▹ A where A is implicitly lifted to a singleton context.

We now have the following derivation rules:

· ; A ⊢ A
init

∆ ; ΩL ,A,ΩR ⊢ C

∆ ◃▹ A ; ΩL ,ΩR ⊢ C
place

The place rule, when read bottom up, places a linear hypothesis in

the ordered context. Note that we cannot move hypotheses from the

ordered to the linear context. These two rules show that, in essence,

this judgement represents one ordered context where the positions

of the linear hypotheses are not fixed until they are actually used.

∆ ; Ω,A ⊢ B

∆ ; Ω ⊢ A � B
�R

∆ ; ΩL ,B,ΩR ⊢ C ∆A ; ΩA ⊢ A

∆ ◃▹ ∆A ; ΩL ,A � B,ΩA,ΩR ⊢ C
�L

∆ ; A,Ω ⊢ B

∆ ; Ω ⊢ A � B
�R

∆ ; ΩL ,B,ΩR ⊢ C ∆A ; ΩA ⊢ A

∆ ◃▹ ∆A ; ΩL ,ΩA,A � B,ΩR ⊢ C
�L

The ordered implication rules now carry along linear hypotheses

and the use of ◃▹ ensures that order of linear hypotheses doesn’t

matter.

∆,A ; Ω ⊢ B

∆ ; Ω ⊢ A ( B
(R

∆ ; ΩL ,B,ΩR ⊢ C ∆A ; · ⊢ A

∆ ◃▹ ∆A ; ΩL ,A ( B,ΩR ⊢ C
(L

The restriction on the premise of the (L rule forbids the linear

argument from depending on any ordered hypotheses. Note that

the left rules only apply to formulae in the ordered context.

2.3 Adding Unrestricted Hypotheses
Unrestricted hypotheses can also be added to the logic in a manner

similar to the previous section. The formula language is extended

to include unrestricted implications:

A ::= P | A � A | A � A | A ( A | A→ A

and an unrestricted context, Γ, is added to the judgement:

Γ;∆;Ω ⊢ A

The derivation rules are similarly modified. We only show the extra

rules which directly deal with the unrestricted hypotheses:

Γ ◃▹ A;∆;ΩL ,A,ΩR ⊢ C

Γ ◃▹ A;∆;ΩL ,ΩR ⊢ C
copy

Γ,A;∆;Ω ⊢ B

Γ;∆;Ω ⊢ A→ B
→R

Γ;∆;ΩL ,B,ΩR ⊢ C Γ; ·; · ⊢ A

Γ;∆;ΩL ,A→ B,ΩR ⊢ C
→L

The copy rule, when read bottom up, retains a copy of the unre-

stricted formula as well as places a copy in the ordered context;

additionally, the→L rule forbids unrestricted arguments from de-

pending on both linear and ordered hypotheses.

2.4 Full System
OLL consists of the logic in the previous section extended with

the full complement of logical connectives, i.e. two multiplicative

conjunctions (•, ◦) and their unit (1), additive conjunction (& ) and

its unit (⊤), additive disjunction (⊕) and its unit (0), a linear modality

(¡), an unrestricted modality (!), as well as universal and existential

quantifiers over a standard term language. The derivation rules for

multiplicative conjunction and unit are as follows:

Γ; ·; · ⊢ 1

1R

Γ;∆0;Ω0 ⊢ A0 Γ;∆1;Ω1 ⊢ A1

Γ;∆0 ◃▹ ∆1;Ω0,Ω1 ⊢ A0 •A1

•R
Γ;∆;ΩL ,A,B,ΩR ⊢ C

Γ;∆;ΩL ,A • B,ΩR ⊢ C
•L

Rather than show the rule for ◦, we simply note thatA◦B ≡ B •A.
We will elide the remaining derivation rules which are not par-

ticularly germane to the rest of the paper, and which can be easily

recovered from their counterparts in section 3.

3 UNIFORM ORDERED LINEAR LOGIC
In a slight deviation from [8], we shall define uniform proofs to

be goal directed, meaning the proof follows the structure of the

goal formula (so the init rule is restricted to have an atomic goal),

and focussed[1], meaning a hypothesis must be completely used

before examining another hypothesis. These constraints allow the

interpretation of a goal formula as program instructions, hypotheses

as named subroutines, and atomic goals as subroutine calls. UOLL

is the fragment of OLL for which uniform proofs are complete.

In order to satisfy the constraints of uniform derivations, we will

have to restrict the occurrence of some formulae; e.g. there is no

uniform derivation of

Γ; ·;A • B ⊢ A • B

since there is no proof beginning (reading bottom up) with the •R
rule.

It turns out that we only have to restrict the formulae which can

be hypotheses. Towards that end we describe the formula language

of UOLL in terms of clause formulae and goal formulae (whose

definitions are mutually recursive).

We define clause formulae as:

D ::= P | ∀x .D
| ⊤ | D &D
| G � D | G � D
| G ( D | G → D

We define goal formulas as:

G ::= P | ∀x .G | ∃x .G
| ⊤ | G &G
| 0 | G ⊕ G
| 1 | G •G | G ◦G
| D � G | D � G | ¡G
| D ( G | !G | D → G
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In order to make our derivations goal directed and focussed, we

will use two separate judgements for UOLL derivations:

Γ;∆;Ω ⊢ G and Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P

where all contexts are restricted to only contain clause formulas;

we respectively refer to the two judgements as goal directed judge-

ments and focussed judgements.

Derivations of goal directed judgements follow the structure

of the goal formula, G; when read bottom up, these derivations

break down the goal until it is atomic using the various −R rules

shown below. Once the goal formula is atomic, a clause formula

must be chosen, using one of the choice rules shown below, and the

derivation switches to focussed judgements which keep the "focus"

of the derivation on the chosen clause formula until the atomic goal

is satisfied.

Derivations of focussed judgements follow the structure of the

chosen clause formula, D; when read bottom up, these derivations

break down the clause formula until it is atomic using the various

−L rules shown below
1
which also spawn off new goal directed

sub-derivations. Focussed judgements have a split ordered context

(i.e. ΩL and ΩR ) in order to maintain the position of the chosen

clause in the ordered context; i.e., Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P may be

thought of as Γ;∆;ΩL ,D,ΩR ⊢ P where left rules may only apply

to D.
We now present the UOLL derivation rules. The additive con-

nectives do not require splitting contexts.

Γ;∆;Ω ⊢ ⊤
⊤R

Γ;∆;Ω ⊢ G0 Γ;∆;Ω ⊢ G1

Γ;∆;Ω ⊢ G0 &G1

& R

Γ;∆;Ω ⊢ G0

Γ;∆;Ω ⊢ G0 ⊕ G1

⊕R0
Γ;∆;Ω ⊢ G1

Γ;∆;Ω ⊢ G0 ⊕ G1

⊕R1

The multiplicatives do require splitting contexts.

Γ; ·; · ⊢ 1

1R

Γ;∆0;Ω0 ⊢ G0 Γ;∆1;Ω1 ⊢ G1

Γ;∆0 ◃▹ ∆1;Ω0,Ω1 ⊢ G0 •G1

•R

Γ;∆0;Ω0 ⊢ G0 Γ;∆1;Ω1 ⊢ G1

Γ;∆0 ◃▹ ∆1;Ω1,Ω0 ⊢ G0 ◦G1

◦R

The implictions add hypotheses to the appropriate places.

Γ;∆;Ω,D ⊢ G

Γ;∆;Ω ⊢ D � G
�R

Γ;∆;D,Ω ⊢ G

Γ;∆;Ω ⊢ D � G
�R

Γ;∆,D;Ω ⊢ G

Γ;∆;Ω ⊢ D � G
(R

Γ,D;∆;Ω ⊢ G

Γ;∆;Ω ⊢ D � G
→R

The quantifiers are standard.

Γ;∆;Ω ⊢ G[x := a]

Γ;∆;Ω ⊢ ∀x .G ∀R (a new)
Γ;∆;Ω ⊢ G[x := t]

Γ;∆;Ω ⊢ ∃x .G ∃R
The modalities explicitly capture independence from ordered and

linear hypotheses.

Γ;∆; · ⊢ G

Γ;∆; · ⊢ ¡G
¡R

Γ; ·; · ⊢ G

Γ; ·; · ⊢ !G
!R

1
The symmetry between the behavior of goal directed and focussed derivations

informs the idea of residuation discussed in section 4.

As mentioned above, the choice rules apply when the goal is atomic

and allow the derivation to shift from being goal directed to fo-

cussing on a hypothesis; these rules have the functionality of the

place and copy rules built-in and thus require splitting the ordered

context.

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P

Γ;∆;ΩL ,D,ΩR ⊢ P
choiceΩ

Γ;∆L ,∆R ; (ΩL ;ΩR ) ⊢ D ≫ P

Γ;∆L ,D,∆R ;ΩL ,ΩR ⊢ P
choice∆

Γ ◃▹ D;∆; (ΩL ;ΩR ) ⊢ D ≫ P

Γ ◃▹ D;∆;ΩL ,ΩR ⊢ P
choiceΓ

As mentioned above, the init rule is restricted to atomic formulae.

Γ; ·; (·; ·) ⊢ P ≫ P
init

The remaining rules are just reformulations of the left (L) rules

from OLL into the focussing judgment.

Γ;∆; (ΩL ;ΩR ) ⊢ D[x := t] ≫ P

Γ;∆; (ΩL ;ΩR ) ⊢ ∀x .D ≫ P
∀L

Γ;∆; (ΩL ;ΩR ) ⊢ D0 ≫ P

Γ;∆; (ΩL ;ΩR ) ⊢ D0 &D1 ≫ P
& L0

Γ;∆; (ΩL ;ΩR ) ⊢ D1 ≫ P

Γ;∆; (ΩL ;ΩR ) ⊢ D0 &D1 ≫ P
& L1

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ;∆G ;ΩG ⊢ G

Γ;∆G ◃▹ ∆; (ΩL ;ΩG ,ΩR ) ⊢ G � D ≫ P
�L

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ;∆G ;ΩG ⊢ G

Γ;∆G ◃▹ ∆; (ΩL ,ΩG ;ΩR ) ⊢ G � D ≫ P
�L

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ;∆G ; · ⊢ G

Γ;∆G ◃▹ ∆; (ΩL ;ΩR ) ⊢ G ( D ≫ P
(L

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ; ·; · ⊢ G

Γ;∆; (ΩL ;ΩR ) ⊢ G → D ≫ P
→L

UOLL is sound and complete with respect to OLL (restricted to

the same formula language). The proofs are non-trivial but largely

follow the techniques used in [1, 8]; the complete details can be

found in [10].

3.1 Ordered Linear Logic Progamming
Uniform proofs provide a strong computational intuition and re-

move a large amount of non-determinism from proof search. For

intuitionistic logic, they remove all non-determinism
2
except the

choice of clause to focus on; i.e., the only point in the proof search

where a choice needs to be made is when an atomic goal arises.

However, for (ordered) linear logic, uniform proofs still contain

large amounts of non-determinism related to how contexts are split.

Such non-determinism must be removed to get a reasonable logic

programming language, at least a reasonably efficient one. The

techniques in [4, 6] to lazily split contexts can be generalized, as

described in [10], to handle cases where the ordered context needs

to be split between two premises.

Lazily splitting contexts does not deal with the context splits

in the conclusion of the choiceΓ and choice∆ rules. The technique

2
We ignore the choice of term in the ∃R and ∀L rules which is usually dealt with by

unification.
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for removing that non-determinism is called residuation, or logical

compilation. As it is central to writing a meta-circular interpreter

for Olli, we explore residuation in some detail in section 4.

3.2 Towards a Meta-Circular Intepreter
We would like to write a meta-circuluar interpreter for Olli which

uses the meta-logic contexts to represent the object-logic contexts,

rather than carrying around explicit term-level representations of

the contexts. Such an encoding has the pleasant property of allow-

ing the object-logic connectives to be turned directly intometa-logic

connectives, e.g. object-logic implication could be implemented by

the clause: goal (implies A B)← (hyp A→ goal B).

One immediate obstacle to creating such an encoding for UOLL

is the split ordered context in the focussing judgements. Object-

logic terms cannot explicitly manipulate meta-logic contexts. As

we shall see in section 4, (full) residuation removes the need for left

rules and focussing judgements and thus saves us from having to

represent split ordered contexts.

4 RESIDUATION
This section motivates and presents residuation, a technique for

“logically compiling” clause formulae into new goal formulae. Olli

relies on residuation to remove the ordered context splits in the

UOLL choice rules which are not covered by lazy context splitting.

The ordered context splits in the choiceΓ and choice∆ rules exist

because the unordered hypothesis must be placed somewhere in

the ordered context before being used. Somewhat remarkably, this

split can be done lazily, or implicitly; the structure of the clause de-

termines where it can be placed in the ordered context. For example,

the judgement

·; P1 � P2 � P ; P2, P1 ⊢ P

has only one UOLL derivation which must place the linear formula

P1 � P2 � P (via the choice∆ rule) between P2 and P1:

init
·; ·; (·; ·) ⊢ P ≫ P ·; ·; P2 ⊢ P2 �L
·; ·; (P2; ·) ⊢ P2 � P ≫ P ·; ·; P1 ⊢ P1 �L

·; ·; (P2; P1) ⊢ P1 � P2 � P ≫ P
choice∆

·; P1 � P2 � P ; P2, P1 ⊢ P

Furthermore, this derivation can be turned into something like

·; ·; P2 ⊢ P2 ·; ·; P1 ⊢ P1

·; ·; P2, P1 ⊢ P2 • P1
•L

·; P1 � P2 � P ; P2, P1 ⊢ P
choice ′∆

where the choice’∆ rule transforms the chosen (linear) clause, P1 �
P2 � P , into the new goal formula, P2 • P1, and does not split the

ordered context.

This transformation, called residuation, exploits the symmetry

between the focussed left rules and the goal directed right rules

to remove the need for explicit left rules altogether; i.e., a clause

formula is residuated into a new goal formula, providing it’s head

matches the current goal, whose structure captures the behavior of

the erstwhile left rules. Residuation is described for intuitionistic

and linear logic in [2] and can be extended to UOLL (for non-ordered

clauses) as follows.

We describe residuation with the following judgement

GI ; D ≫ P \GO

which may be thought of as a function from GI ,D, P to GO where

GI is the accumulating residuated goal, D is the clause formula

being residuated, P is the atomic goal we need to satisfy, andGO is

the final residual goal. The derivation rules for residuation are as

follows:

G ; P ≫ P \G

GI ; D ≫ P \GO

GI ; ∀x .D ≫ P \∃x .GO

G ; ⊤ ≫ P \ 0

GI ; D0 ≫ P \G0 GI ; D1 ≫ P \G1

GI ; D0 &D1 ≫ P \G0 ⊕ G1

G ◦GI ; D ≫ P \GO

GI ; G � D ≫ P \GO

G •GI ; D ≫ P \GO

GI ; G � D ≫ P \GO

¡G •GI ; D ≫ P \GO

GI ; G ( D ≫ P \GO

!G •GI ; D ≫ P \GO

GI ; G → D ≫ P \GO

Residuation succeeds, returning the accumulated residual goal,

when the clause to residuate matches the current atomic goal. The

rule for� uses G ◦GI rather than the equivalent GI •G in order

to preserve the order in which subgoals will be solved; for a clause

G0 � G1 � G2 � P , we desire the order of the subgoals to be

G2,G1,G0 to get a Prolog-style interpretation of the clause where

P is the head and G2 ◦ (G1 •G0) is the body.

The choice rules using residuation would look like:

1 ; D ≫ P \ G Γ;∆;Ω ⊢ G

Γ;∆ ◃▹ D;Ω ⊢ P
choiceR∆

1 ; D ≫ P \ G Γ ◃▹ D;∆;Ω ⊢ G

Γ ◃▹ D;∆;Ω ⊢ P
choiceRΓ

Note that the ordered context is not split; additionally, the initial

residual goal of 1 is fine since G • 1 ≡ G ◦ 1 ≡ G. Then our trans-

formed proof above becomes exactly

Ξ

·; ·; P2 ⊢ P2 ·; ·; P1 ⊢ P1 ◦ 1
•L

·; ·; P2, P1 ⊢ P2 • P1 ◦ 1
choiceR∆

·; P1 � P2 � P ; P2, P1 ⊢ P

where Ξ is

P2 • P1 ◦ 1 ; P ≫ P \ P2 • P1 ◦ 1

P1 ◦ 1 ; P2 � P ≫ P \ P2 • P1 ◦ 1

1 ; P1 � P2 � P ≫ P \ P2 • P1 ◦ 1

Full details of residuation for UOLL alongwith a proof of correctness

can be found in [10].

5 FAILURE OF ORDERED RESIDUATION
Residuated UOLL gets rid of the non-deterministic ordered con-

text split in the choice∆ and choiceΓ rules, but it leaves the choiceΩ

rule unchanged. This is fine from the point-of-view of eliminat-

ing non-deterministic splits, since the context split in choiceΩ is

deterministic. However, it would be nice to have all the choice rules

use residuation and then dispense with the separate judgement for

focussing on a clause formula, and the associated −L rules.
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Unfortunately, choiceΩ cannot be correctly converted to the same

form as the other two rules. As mentioned at the beginning of the

paper, the problem comes down to the position of the ordered clause

not being represented in the residuated goal; to be more concrete,

a putative choiceRΩ rule

1 ; D ≫ P \ G Γ;∆;ΩL ,ΩR ⊢ G

Γ;∆;ΩL ,D,ΩR ⊢ P
choiceRΩ

would allow both

·; ·; P2, P1 � P2 � P , P1 ⊢ P and ·; ·; P2, P1, P1 � P2 � P ⊢ P

to be derived.

In addition to leaving an annoying asymmetry in the logic, the

lack of residuation for ordered clauses effectively prevents us from

writing a nice
3
meta-circular interpreter for Olli directly from the

UOLL derivation rules. The actual difficulty lies in the focussed

judgement which explicitly splits apart the ordered context; if we

use the meta-level contexts to represent the object-level contexts,

we have no way of representing the split ordered context. On the

other hand, we could directly transcribe the UOLL derivation rules

into Olli if we only had the goal directed judgements and a residua-

tion function.

6 REMOVING ORDERED CHOICE
Since the choiceΩ rule encompasses the diffulties previously de-

scribed, a solution to the problem would be to not use that rule; i.e.,

to design a system in which we never focus on a hypothesis in the

ordered context. We propose to essentially demote the ordered con-

text to a list of placeholders (just some arbitrary atomic formulae),

and to put ordered clauses into the linear context, after translation

to a form which can reference those placeholders. For example, the

judgement

· ; · ; P2, P1 � P2 � P , P1 ⊢ P

could be translated to something like

· ; QP � P1 � P2 � P ; P2,QP , P1 ⊢ P

where the atom QP is a placeholder which has been placed into

the appropriate position in the ordered context. Furthermore, the

(only) derivation of this new judgement would just be:

Ξ

·; ·; (P2; P1) ⊢ P1 � P2 � P ≫ P ·; ·;QP ⊢ QP �L
·; ·; (P2;QP , P1) ⊢ QP � P1 � P2 � P ≫ P

choice∆
·;QP � P1 � P2 � P ; P2,QP , P1 ⊢ P

where Ξ is the derivation for the original judgement (without the

final choice∆ step) at the beginning of section 4. Note that there is

only one valid way to split the ordered context, i.e. at the placeholder

QP , thus the judgement

·;QP � P1 � P2 � P ; P2, P1,QP ⊢ P

would not be derivable since we cannot derive

·; ·; (P2, P1 ; ·) ⊢ P1 � P2 � P ≫ P

3
One which doesn’t explicitly represent the logical contexts with terms.

7 UNIFORM ATOMIC ORDERED LINEAR
LOGIC

This section fleshes out the idea sketched at the end of the previous

section to get a full logical system, UAOLL, which is equivalent to

UOLL as presented in section 3. Section 8 gives a proof of correct-

ness for UAOLL. The defining characteristic of UAOLL is that no

ordered formula can be chosen to focus on; as explained in sections

5 and 6, this will ultimately allow us to have a system which can

be directly transcribed into Olli to get a meta-circular interpreter.

In order to prohibit focussing on an ordered formula, UAOLL

will demote the ordered context to a list of placeholders, described

in section 6. For the rest of this section, we assume a distinguished

placeholder predicate Q , taking a single term as an argument, e.g.

Qx . We define demoted ordered contexts as:

ω ::= · | ω, Qx where x not in ω

In other words, a demoted ordered context is a list of unique place-

holders.

We allow placeholders in the grammar of goal formulae, G, de-
fined in section 3:

G ::= Qx | P | . . .

However, we do not add placeholders to the grammar of clause

formulae, D, defined in section 3. Instead, we introduce modified

clause formulae:

E ::= D | Qx � D

and modified linear contexts, δ , for use in UAOLL:

δ ::= · | δ ,E

7.1 UAOLL derivations
We use the following two judgements for UAOLL derivations:

Γ;δ ;ω ⊢ G and Γ;δ ; (ωL ;ωR ) ⊢ E ≫ P

The derivation rules follow.

All the non-implication right rules are identical to their UOLL

counterparts.

Γ;δ ;ω ⊢ ⊤
⊤R′

Γ;δ ;ω ⊢ G0 Γ;δ ;ω ⊢ G1

Γ;δ ;ω ⊢ G0 &G1

& R′

Γ;δ ;ω ⊢ G0

Γ;δ ;ω ⊢ G0 ⊕ G1

⊕R0′
Γ;ω;ω ⊢ G1

Γ;δ ;ω ⊢ G0 ⊕ G1

⊕R1′

Γ;δ ;ω ⊢ G[x := a]

Γ;δ ;ω ⊢ ∀x .G ∀R′(a new)
Γ;δ ;ω ⊢ G[x := t]

Γ;δ ;ω ⊢ ∃x .G ∃R′
Γ;δ ; · ⊢ G

Γ;δ ; · ⊢ ¡G
¡R′

Γ; ·; · ⊢ G

Γ; ·; · ⊢ !G
!R′

Γ; ·; · ⊢ 1

1R′

Γ;δ0;ω0 ⊢ G0 Γ;δ1;ω1 ⊢ G1

Γ;δ0 ◃▹ δ1;ω0,ω1 ⊢ G0 •G1

•R′

Γ;δ0;ω0 ⊢ G0 Γ;δ1;ω1 ⊢ G1

Γ;δ0 ◃▹ δ1;ω1,ω0 ⊢ G0 ◦G1

◦R′

The ordered implication rules add unique placeholders to their

hypotheses which are put into the linear context, and only put the

placeholders into the ordered context.

Γ;δ ,Qx � D;ω,Qx ⊢ G

Γ;δ ;ω ⊢ D � G
�R′ (x new)

Γ;δ ,Qx � D;Qx ,ω ⊢ G

Γ;δ ;ω ⊢ D � G
�R′ (x new)
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The unordered implications are identical to their UOLL counter-

parts.

Γ;δ ,D;ω ⊢ G

Γ;δ ;ω ⊢ D ( G
(R′

Γ,D;δ ;ω ⊢ G

Γ;δ ;ω ⊢ D → G
→R′

The choiceω is much simpler than its UOLL counterpart, choiceΩ

since the ordered context only contains placeholders.

Γ; ·;Qx ⊢ Qx
choiceω

The remaining rules are identical to their UOLL counterparts.

Γ ◃▹ D;δ ; (ωL ;ωR ) ⊢ D ≫ P

Γ ◃▹ D;δ ;ωL ,ωR ⊢ P
choiceγ

Γ;δ ; (ωL ;ωR ) ⊢ E ≫ P

Γ;δ ◃▹ E;ωL ,ωR ⊢ P
choiceδ

Γ; ·; (·; ·) ⊢ P ≫ P
init ′

Γ;δ ; (ωL ;ωR ) ⊢ D[x := t] ≫ P

Γ;δ ; (ωL ;ωR ) ⊢ ∀x .D ≫ P
∀′L

Γ;δ ; (ωL ;ωR ) ⊢ D0 ≫ P

Γ;δ ; (ωL ;ωR ) ⊢ D0 &D1 ≫ P
& 0L′

Γ;δ ; (ωL ;ωR ) ⊢ D1 ≫ P

Γ;δ ; (ωL ;ωR ) ⊢ D0 &D1 ≫ P
& 1L′

Γ;δ ; (ωL ;ωR ) ⊢ D ≫ P Γ;δG ;ωG ⊢ G

Γ;δG ◃▹ δ ; (ωL ;ωG ,ωR ) ⊢ G � D ≫ P
�L′

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ;∆G ;ΩG ⊢ G

Γ;∆G ◃▹ ∆; (ΩL ,ΩG ;ΩR ) ⊢ G � D ≫ P
�L′

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ;∆G ; · ⊢ G

Γ;∆G ◃▹ ∆; (ΩL ;ΩR ) ⊢ G ( D ≫ P
(L′

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ; ·; · ⊢ G

Γ;∆; (ΩL ;ΩR ) ⊢ G → D ≫ P
→L′

We end this section with an example derivation.

Ξ
choiceω

·; ·;QP ⊢ QP �L′
·;Q2 � P2,Q1 � P1; (Q2;QP ,Q1) ⊢ QP � D ≫ P

choiceδ
·;Q2 � P2,QP � D,Q1 � P1;Q2,QP ,Q1 ⊢ P

�R′ ×3
·; ·; · ⊢ P2 � D � P1 � P

where D = P1 � P2 � P
and Ξ is

init ′
·; ·; (·; ·) ⊢ P ≫ P Ξ2 �L′

·;Q2 � P2; (Q2; ·) ⊢ P2 � P ≫ P Ξ1 �L′
·;Q2 � P2,Q1 � P1; (Q2;Q1) ⊢ P1 � P2 � P ≫ P

and Ξ1 is

init ′
·; ·; (·; ·) ⊢ P1 ≫ P1

choiceω
·; ·;Q1 ⊢ Q1 �L′

·; ·; (·;Q1) ⊢ Q1 � P1 ≫ P1
choiceδ

·;Q1 � P1;Q1 ⊢ P1

and Ξ2 is similar to Ξ1.

8 CORRECTNESS
In this section, we formally prove the correctness of UAOLL with

respect to UOLL. Since the ordered UAOLL implications add to

both the linear and ordered contexts, we will need machinery for

translating between the linear and ordered contexts of UAOLL and

UOLL.

8.1 Translating contexts
The linear context in UAOLL effectively contains both linear and

ordered hypotheses, therefore we will need to simultaneously trans-

late linear and ordered contexts between UAOLL and UOLL. We

use the judgement δ ; ω � ∆ ; Ω for this translation as follows:

· ; · � · ; ·
·

δ ; ω � ∆ ; Ω

δ ◃▹ D ; ω � ∆ ◃▹ D ; Ω
lin

δL ; ωL � ∆L ; ΩL δR ; ωR � ∆R ; ΩR

δL ◃▹ δR ◃▹ Qx � D ; ωL ,Qx ,ωR � ∆L ◃▹ ∆R ; ΩL ,D,ΩR
ord

(where Qx not in ωL nor in ωR )

We can freely combine translated contexts to get larger translated

contexts.

Lemma 1 (Combining Translations).

δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR implies
δL ◃▹ δR ; ωL ,ωR � ∆L ◃▹ ∆R ; ΩL ,ΩR

Proof. By induction on the structure of the given derivations.

�

We cannot freely split translated contexts apart since we need

to make sure that corresponding pieces stay together. However, we

can safely split apart translated contexts based on a given ordered

context split.

Lemma 2 (Splitting Translations).

(1) δ ; ωL ,ωR � ∆ ; Ω implies
δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR

where δ = δL ◃▹ δR and ∆ = ∆L ◃▹ ∆R and Ω = ΩL ,ΩR
(2) δ ; ω � ∆ ; ΩL ,ΩR implies

δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR
where ∆ = ∆L ◃▹ ∆R and δ = δL ◃▹ δR and ω = ωL ,ωR

Proof. By inversion on lin and ord, and induction on the struc-

ture of the given derivation. �

We note that linear clauses of form D (i.e. not Qx � D) are
not associated with anything in the ordered context, and a valid

judgement δ ; · � ∆ ; · will only have such clauses in δ and ∆;
thus, we have the following corollary.

Lemma 3 (Inversion on ord).

(1) δ ◃▹ Qx � D ; ω,Qx � ∆ ; Ω′ implies

Ω′ = Ω,D and δ ; ω � ∆ ; Ω.
(2) δ ′ ; ω ′ � ∆ ; Ω,D implies

δ ′ = δ ◃▹ Qx � D and ω ′ = ω,Qx and δ ; ω � ∆ ; Ω.
(3) δ ◃▹ Qx � D ; Qx ,ω � ∆ ; Ω′ implies

Ω′ = D,Ω and δ ; ω � ∆ ; Ω.
(4) δ ′ ; ω ′ � ∆ ; D,Ω implies

δ ′ = δ ◃▹ Qx � D and ω ′ = Qx ,ω and δ ; ω � ∆ ; Ω.
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Proof. By using lemma 2 and then using lemma 1 to move any

stray linear clauses back to the desired side. �

8.2 Soundness
We now state and prove the soundness of UOALL with respect to

UOLL. Specifically, given a UAOLL derivation of a judgement, J ,
there is a corresponding UOLL judgement, J ′, the result of trans-
lating the UAOLL contexts to UOLL contexts, and a corresponding

UOLL derivation of J ′.

Theorem 1 (Soundness).

(1) Γ;δ ;ω ⊢ G implies ∃∆,Ω . δ ; ω � ∆ ; Ω
and Γ;∆;Ω ⊢ G

(2) Γ;δ ; (ωL ;ωR ) ⊢ D ≫ P implies

∃δL ,δR ,∆L ,∆R ,ΩL ,ΩR . δ = δL ◃▹ δR and
δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR and
Γ;∆L ◃▹ ∆R ; (ΩL ;ΩR ) ⊢ D ≫ P

Proof. By induction on the structure of the given derivation.

We show some representative cases.

case:

Γ;δ ,Qx � D;ω,Qx ⊢ G

Γ;δ ;ω ⊢ D � G
�R′ (x new)

δ ,Qx � D ; ω,Qx � ∆ ; Ω′

and Γ;∆;Ω′ ⊢ G by ind. hyp.

Ω′ = Ω,D and δ ; ω � ∆ ; Ω by lemma 3.

Γ;∆;Ω ⊢ D � G by �R .

case:

Γ;δ ; (ωL ;ωR ) ⊢ E ≫ P

Γ;δ ◃▹ E;ωL ,ωR ⊢ P
choiceδ

sub: E = D
δ = δL ◃▹ δR and

δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR and

Γ;∆L ◃▹ ∆R ; (ΩL ;ΩR ) ⊢ D ≫ P by ind. hyp.

δL ◃▹ δR ; ωL ,ωR � ∆L ◃▹ ∆R ; ΩL ,ΩR by lemma 1.

δL ◃▹ δR ◃▹ D ; ωL ,ωR � ∆L ◃▹ ∆R ◃▹ D ; ΩL ,ΩR by lin.

Γ;∆L ◃▹ ∆R ◃▹ D;ΩL ,ΩR ⊢ P by choice∆.
sub: E = Qx � D

Γ;δ ; (ωL ;ωR′) ⊢ D ≫ P and

ωR = Qx ,ωR′ by inversion on�L′ .

δ = δL ◃▹ δR and

δL ; ωL � ∆L ; ΩL and δR ; ωR′ � ∆R ; ΩR and

Γ;∆L ◃▹ ∆R ; (ΩL ;ΩR ) ⊢ D ≫ P by ind. hyp.

δL ◃▹ δR ◃▹ Qx � D ; ωL ,Qx ,ωR′ � ∆L ◃▹ ∆R ; ΩL ,D,ΩR
by ord.

Γ;∆L ◃▹ ∆R ;ΩL ,D,ΩR ⊢ P by choiceΩ .

case:

Γ;δ ; (ωL ;ωR ) ⊢ D ≫ P Γ;δG ;ωG ⊢ G

Γ;δ ◃▹ δG ; (ωL ;ωG ,ωR ) ⊢ G � D ≫ P
�L′

δ = δL ◃▹ δR and

δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR and

Γ;∆L ◃▹ ∆R ; (ΩL ;ΩR ) ⊢ D ≫ P by ind. hyp.

δG ; ωG � ∆G ; ΩG and Γ;∆G ;ΩG ⊢ G by ind hyp.

δG ◃▹ δR ; ωG ,ωR � ∆G ◃▹ ∆R ; ΩG ,ΩR by lemma 1.

Γ;∆L ◃▹ ∆R ◃▹ ∆G ; (ΩL ;ΩG ,ΩR ) ⊢ G � D ≫ P by �L .

�

8.3 Completeness
This section formally states and proves the completeness of UAOLL

with respect to UOLL; this theorem and proof are largely symmetric

to the those for soundess in section 8.2.

Theorem 2 (Completeness).

(1) Γ;∆;Ω ⊢ G implies ∃δ ,ω . δ ; ω � ∆ ; Ω
and Γ;δ ;ω ⊢ G

(2) Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P implies
∃∆L ,∆R ,δL ,δR ,ωL ,ωR . ∆ = ∆L ◃▹ ∆R and
δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR and
Γ;δL ◃▹ δR ; (ωL ;ωR ) ⊢ D ≫ P

Proof. By induction on the structure of the given derivation.

We show some representative cases.

case:

Γ;∆;Ω,D ⊢ G

Γ;∆;Ω ⊢ D � G
�R

δ ′ ; ω ′ � ∆ ; Ω,D and Γ;δ ′;ω ′ ⊢ G by ind. hyp.

δ ′ = δ ◃▹ Qx � D and ω ′ = ω,Qx and

δ ; ω � ∆ ; Ω by lemma 3.

Γ;δ ;ω ⊢ D � G by�R′ .

case:

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P

Γ;∆;ΩL ,D,ΩR ⊢ P
choiceΩ

∆ = ∆L ◃▹ ∆R and

δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR and

Γ;δL ◃▹ δR ; (ωL ;ωR ) ⊢ D ≫ P by ind. hyp.

δL ◃▹ δR ◃▹ Qx � D ; ωL ,Qx ,ωR � ∆L ◃▹ ∆R ; ΩL ,D,ΩR
by ord.

Γ; ·;Qx ⊢ Qx by choiceω .
Γ;δL ◃▹ δR ; (ωL ;Qx ,ωR ) ⊢ Qx � D ≫ P by�R′ .

Γ;δL ◃▹ δR ◃▹ Qx � D;ωL ,Qx ,ωR ⊢ P by choiceδ .

case:

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P

Γ;∆ ◃▹ D;ΩL ,ΩR ⊢ P
choice∆

∆ = ∆L ◃▹ ∆R and

δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR and

Γ;δL ◃▹ δR ; (ωL ;ωR ) ⊢ D ≫ P by ind. hyp.

δL ◃▹ δR ; ωL ,ωR � ∆L ◃▹ ∆R ; ΩL ,ΩR by lemma 1.

δL ◃▹ δR ◃▹ D ; ωL ,ωR � ∆L ◃▹ ∆R ◃▹ D ; ΩL ,ΩR by lin.

Γ;δL ◃▹ δR ◃▹ D;ωL ,ωR ⊢ P by choiceδ .

case:

Γ;∆; (ΩL ;ΩR ) ⊢ D ≫ P Γ;∆G ;ΩG ⊢ G

Γ;∆ ◃▹ ∆G ; (ΩL ;ΩG ,ΩR ) ⊢ G � D ≫ P
�L and

∆ = ∆L ◃▹ ∆R and

δL ; ωL � ∆L ; ΩL and δR ; ωR � ∆R ; ΩR and

Γ;δL ◃▹ δR ; (ωL ;ωR ) ⊢ D ≫ P by ind. hyp.

δG ; ωG � ∆G ; ΩG and Γ;δG ;ωG ⊢ G by ind hyp.

δG ◃▹ δR ; ωG ,ωR � ∆G ◃▹ ∆R ; ΩG ,ΩR by lemma 1.

Γ;δL ◃▹ δG ◃▹ δR ; (ωL ;ωG ,ωR ) ⊢ G � D ≫ P by �L′ .

�

9 RESIDUATED UAOLL
The presentation of UAOLL in section 7 does not allow focussing

on an ordered hypothesis thus overcoming the main obstacle to
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writing a nice meta-circular interpreter as described in section 5.

However, UAOLL is not directly suited for transcription into Olli

since its focussing judgement still maintains a split ordered context.

In this section we remove the need for focussing judgements by

adding residuation to UAOLL.

As it turns out, there is not much to do. UAOLL is close enough to

UOLL that wemay directly use the residuationmachinery described

in section 4. We need only modify the choiceγ and choiceδ rules

to use residuation, and remove the init’ rule. The modified choice
rules are as follows:

1 ; D ≫ P \G Γ ◃▹ D;∆;Ω ⊢ G

Γ ◃▹ D;∆;Ω ⊢ P
choiceRγ

1 ; D ≫ P \G Γ;∆;Ω ⊢ G

Γ;∆ ◃▹ D;Ω ⊢ P
choiceRδ

The correctness statement and proof for adding residuation to

UAOLL is essentially unchanged from the version for UOLL, full

details can be found in [10].

We end this section with an example derivation in residuated

UAOLL.

Ξ

Ξ2

Ξ1

choiceω
·; ·;QP ⊢ QP

1R′
·; ·; · ⊢ 1

◦R′
·; ·;QP ⊢ QP ◦ 1

◦R′
·;Q1 � P1;QP ,Q1 ⊢ P1 ◦QP ◦ 1

•R′
·;Q2 � P2,Q1 � P1;Q2,QP ,Q1 ⊢ P2 • P1 ◦QP ◦ 1

choiceRδ
·;Q2 � P2,QP � P1 � P2 � P ,Q1 � P1;Q2,QP ,Q1 ⊢ P

�R′ ×3
·; ·; · ⊢ P2 � (P1 � P2 � P)� P1 � P

where Ξ is

P2 • P1 ◦QP ◦ 1 ; P ≫ P \ P2 • P1 ◦QP ◦ 1

P1 ◦QP ◦ 1 ; P2 � P ≫ P \ P2 • P1 ◦QP ◦ 1

QP ◦ 1 ; P1 � P2 � P ≫ P \ P2 • P1 ◦QP ◦ 1

1 ; QP � P1 � P2 � P ≫ P \ P2 • P1 ◦QP ◦ 1

Ξ2 is

Q2 ◦ 1 ; P2 ≫ P2 \Q2 ◦ 1

1 ; Q2 � P2 ≫ P2 \Q2 ◦ 1

choiceω
·; ·;Q2 ⊢ Q2

1R′
·; ·; · ⊢ 1

◦R′
·; ·;Q2 ⊢ Q2 ◦ 1

choiceδ
·;Q2 � P2;Q2 ⊢ P2

and Ξ1 is similar to Ξ2.

10 META-CIRCULAR INTERPRETER
This section shows the promised meta-circular interpreter for Olli,

which is (almost) a direct transcription of the residuated UAOLL

rules, making use of the meta-logic contexts. The main difference

between UAOLL and our object language is that we don’t formalize

the distinction between goal formulae and clause formulae; this

makes the correctness of our interpreter rely on the operational

semantics of Olli, i.e. attempting to solve for a grammatically incor-

rect formula will result in failure to find a proof, rather than in a

type error.

We use the same syntax for the meta-logic as we’ve used for

UAOLL. We assume a simply typed lambda calculus for the term

language. o is the (built-in) type of predicates; i.e.� : o -> o -> o.

10.1 Brief review of Olli
We write our Olli code in a Prolog style where program clauses

generally take the form: head � body where the whole clause

is in the grammar for clauses, D, defined in section 3; i.e., head is

a clause formula, D, while body is a goal formula, G. We use �
as the outermost connective for uniformity even though the other

implications often also work
4
. Additionally, following Prolog, we

use upper case letters for variables universally quantified at the

outermost level; e.g. a X � b Y is equivalent to ∀x .∀y.a x � b y.

The behavior of goal formulae (i.e. the bodies of clauses) gen-

erally follows the bottom-up reading of the corresponding (goal

directed) rule for that formula. Universal quantifiers create a fresh

parameter guaranteed not to already exist.

Implications dynamically add hypotheses to the context match-

ing the implication; e.g., a X � b X � c X ( d. is a clause which

takes an argument X and adds b X to the left end of the ordered

context, then adds c X to the linear context, and then calls d.

Ordered multiplicative conjunctions specify the relative order of

the hypotheses used by each conjunct; e.g., a X � b • c X ◦ d is

a clause with three subgoals, b, c X, and d, where the hypotheses

used by b are to the left of those used by the other two subgoals,

and the hypotheses used by c X are to the right of those used by

d; i.e. the ordered context consumed by the clause would look like

ωb ,ωd ,ωc where ωb contains the hypotheses consumed by b and

similar for d and c.

10.2 Encoding of UAOLL
Here is the signature for the object language:

trm : type. frm : type.

atom : type atm : atom -> frm.

place : trm -> atm. one : frm.

# : frm -> frm -> frm. zero : frm.

& : frm -> frm -> frm. top : frm.

forall : (trm -> frm) -> frm. exists : (trm -> frm) -> frm.

-» : frm -> frm -> frm. >-> : frm -> frm -> frm.

–o : frm -> frm -> frm. –> : frm -> frm -> frm.

* : frm -> frm -> frm. <> : frm -> frm -> frm.

gnab : frm -> frm. bang : frm -> frm.

We assume that all of our object level binary operators are infix.

#, * and <> are meant to represent ⊕, • and ◦.

The encoding of residuation directly transcribes the residuation

rules in section 4; where the judgement

Gi ; D ≫ P \Go

is represented by the predicate resid Gi D P Go defined as follows:

resid : frm -> frm -> atm -> frm -> o.

resid G (atm P) P G.

resid G top P zero.

4
The exact implication required in a clause is a function of what kinds of hypotheses

the clause will need to access and whether the clause itself is ordered, e.g. unrestricted

clauses may safely use� or�.
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resid G (D0 & D1) P (G0 # G1) �
resid G D0 P G0 • resid G D1 P G1.

resid Gi (forall D) P (exists Go) � ∀y . resid Gi (D y) P (Go y).

resid Gi (G -» D) P Go � resid (G <> Gi) D P Go.

resid Gi (G >-> D) P Go � resid (G * Gi) D P Go.

resid Gi (G –o D) P Go � resid (gnab G * Gi) D P Go.

resid Gi (G –> D) P Go � resid (bang G * Gi) D P Go.

Note that resid does not depend upon any linear nor ordered

hypotheses.

Our encoding of the goal directed rules uses the meta-logic con-

texts (i.e. Olli’s own contexts) to represent the object-logic contexts;

i.e. there is no explicit representation of a context. We use the pred-

icate hyp to lift object-logic formulas into the meta-logic context.

Thus the judgement

Γ;δ ;ω ⊢ G

is simply represented by the predicate goal G, and each object

hypothesis e is captured by a meta-logic hypothesis hyp e. The

encoding of the rules themselves is then a direct transcription of

the rules in sections 7 and 9.

hyp : frm -> o.

goal : frm -> o.

goal top � ⊤.

goal (G0 & G1) � goal G0 & goal G1.

goal (G0 # G1) � goal G0 ⊕ goal G1.

goal (forall G) � ∀x . goal (G x).

goal (exists G) � goal (G X).

goal (D -» G) � ∀x .
hyp (atm (place x) -» D) ( hyp (atm (place x))� goal G.

goal (D >-> G) � ∀x .
hyp (atm (place x) -» D) ( hyp (atm (place x))� goal G.

goal (D –o G) � hyp D( goal G.

goal (D –> G) � hyp D→ goal G.

goal (gnab G) � ¡ (goal G).

goal (bang G) � ! (goal G).

goal one � 1.

goal (G * H) � goal G • goal H.

goal (G <> H) � goal G ◦ goal H.

goal (atm P) � hyp D • resid one D P G • goal G.

The final atm P rule above first chooses a clause from the (im-

plicit meta-logical) context, and then calls the residuation predicate

on it; since we are using the meta-logic contexts, this one rule im-

plements both choiceγ and choiceδ . Furthermore, since we are not

distinguishing the place atom from other atoms, the atm P rule also

does the job of the choiceω rule where the resid clause will do the

actual matching and return the new goal one.

11 CONCLUSION
We have presented UAOLL, an alternate formulation of UOLL

amenable to direct implementation in Olli, and proved its correct-

ness. UAOLL gives a provably correct meta-circular interpreter

for Olli which makes use of the meta-logic contexts rather than

explicitly representing the object-level contexts as terms.

We end with several directions for further work. There are sev-

eral optimizations which could be made to UAOLL. We would like

to investigate moving residuation to the implication rules (so that

residuation only happens once) and recursively residuating sub-

goals to get a system closer to the logical compilation described

in [3]. We would also like to investigate a more aggressive check

that the placeholder atom is satisfied, i.e. checking the placeholder

could be done at the same time as checking that the head matches

the goal; this would remove the need for an explicit choiceω rule.

The correctness of UAOLL with respect to UOLL is noteworthy

since UAOLL has a demoted ordered context which only contains

atoms. It would be interesting to see if all of OLL can be encoded

into a corresponding system with a demoted ordered context.

Finally, it would be interesting to translate UAOLL into a more

modern focussing system, e.g. [12] or [5].
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