
Autosubst 2: Towards Reasoning with Multi-Sorted de Bruijn
Terms and Vector Substitutions

Jonas Kaiser

Saarland University

Saarbrücken, Germany

jkaiser@ps.uni-saarland.de

Steven Schäfer

Saarland University

Saarbrücken, Germany

schaefer@ps.uni-saarland.de

Kathrin Stark

Saarland University

Saarbrücken, Germany

kstark@ps.uni-saarland.de

ABSTRACT
Formalising metatheory in the Coq proof assistant is tedious as

native support for reasoning about languages with binders is mar-

ginal at best. The Autosubst framework [9] automates working with

de Brujin terms: for each annotated inductive type, it generates

a corresponding substitution operation and a decision procedure

for assumption-free substitution lemmas. A key part of the equa-

tional theory are parallel substitutions which combine multiple

single-variable substitutions. However, due to its separate treat-

ment of sorts Autosubst lacks support for mutual inductive types.

This restriction is removed in our prototype implementation of

Autosubst 2: second-order HOAS specifications are translated into

potentially mutual inductive term sorts. Again, parallelising sub-

stitutions is the key: we introduce vector substitutions to combine

the application of multiple parallel substitutions into exactly one

instantiation operation for each sort. The resulting equational the-

ory is both simpler and more expressive than that of the original

Autosubst framework.

CCS CONCEPTS
• Theory of computation → Automated reasoning; Type theory;
Operational semantics;

KEYWORDS
de Bruijn representation, parallel substitutions, σ -calculus, multi-

sorted terms

ACM Reference format:
Jonas Kaiser, Steven Schäfer, and Kathrin Stark. 2017. Autosubst 2: Towards

Reasoning with Multi-Sorted de Bruijn Terms and Vector Substitutions.

In Proceedings of LFMTP ’17, Oxford, United Kingdom, September 8, 2017,
5 pages.

https://doi.org/10.1145/3130261.3130263

1 INTRODUCTION
Formalising the metatheory of programming languages and logical

systems in a proof assistant requires the treatment of syntax with

binders. In systems without native support for such reasoning, like

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LFMTP ’17, September 8, 2017, Oxford, United Kingdom
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5374-8/17/09. . . $15.00

https://doi.org/10.1145/3130261.3130263

the general purpose proof assistant Coq, we have to rely on libraries

to avoid heaps of boilerplate and uninteresting technicalities.

With Autosubst [9] we introduced such a library for de Bruijn

syntax in Coq. Based on de Bruijn’s original presentation [5] and

the σ -calculus [1], Autosubst takes an annotated inductive type of

terms, automatically derives a capture-avoiding instantiation oper-

ation for parallel substitutions, and provides a decision procedure

for assumption-free substitution lemmas [8]. We have successfully

used Autosubst in several case studies, ranging from strong nor-

malisation proofs to the metatheory of Martin-Löf type theory [9],

as well as equivalence proofs of alternative syntactic presentations

of System F [6].

That said, there are several shortcomings with the current ver-

sion of Autosubst:

(1) The generation of an instantiation operation for a given term

sort, that is, a syntactic class, automatically equips the sort

with a variable constructor.

(2) The handling of heterogeneous substitutions, i.e., multiple

instantiation operations on a single term sort, is ad-hoc.

(3) The implementation fails to handle certain inductive term

sorts accepted by Coq, in particular, due to the handling of

heterogeneous substitutions, mutual inductive sorts.

(4) Although technically dispensable, the automation is tied to

the axiom of functional extensionality.

(5) The implementation is simply too slow.

In this paper we report on a work-in-progress extension of Auto-

subst to address these problems.

The first three issues are solved by shifting the input language. In-

stead of accepting pre-existing inductive types in Coq as term sorts,

we start from a higher-order abstract syntax (HOAS) [7] system

specification. Based on the specification we compute which sorts

require variables and which sorts have to be declared as mutually

inductive. At the moment we only accept second-order specifica-

tions, that is, we do not admit HOAS constants like the µ-operator
found in [2]: mu : ((tm → nam)→ nam)→ tm. As a result, the gener-

ated inductive types in Coq are simple in the sense that they do not

have constructors accepting functions as arguments. Together with

carefully chosen proof statements this allows us to reason about

them without assuming the axiom of functional extensionality, thus

alleviating the fourth issue.

The main contribution of this paper is our novel treatment of

heterogeneous substitutions. Instead of equipping a given sort x
with a separate instantiation operation for each sort y that may

occur as a variable in x , we generate a single instantiation operation
that takes a vector of parallel substitutions with one component

for each occurring variable sort y. For sorts without any variable

occurrences no instantiation is generated.

10

https://doi.org/10.1145/3130261.3130263
https://doi.org/10.1145/3130261.3130263

Towards Autosubst 2: Multi-Sorted de Bruijn and Vector Substitutions LFMTP ’17, September 8, 2017, Oxford, United Kingdom

Using vectors of parallel substitutions simplifies the equational

theory of substitution lemmas in the heterogeneous setting. We

extend the automation of Autosubst accordingly, using a straight-

forward extension of the σ -calculus. In contrast to Autosubst, we

generate the automation via an external tool, using a type-class

based simplification mechanism to drop the axiom of functional

extensionality and meet our performance goals in the future.

To demonstrate the benefit of mutual recursive types with het-

erogeneous substitutions we revisit a case study from [9]. We show

weak normalisation of call-by-value System F, hereafter called FCBV,

by making a syntactic distinction between terms and values. This

syntactic distinction simplifies the definitions and leads to an ex-

tremely short proof. All emerging substitution lemmas are auto-

matically solved by our extended automation tactic.

A first prototype of Autosubst 2 and the accompanying material

are available at: https://www.ps.uni-saarland.de/extras/lfmtp17.

2 FROM PARALLEL TO VECTOR
SUBSTITUTIONS

The main feature of de Bruijn syntax is the absence of variable

names. Variables are instead represented as numerical indices,

where n references the n-th enclosing binder of the correspond-

ing scope. The following grammar gives System F in de Bruijn

representation, where we distinguish terms and values.

A,B ∈ ty ::= X | A → B | ∀. A Types

s, t ∈ tm ::= s t | s A | v Terms

u,v ∈ vl ::= x | λA. s | Λ. s Values

We recall the definition of instantiating a type A with a parallel

type substitution σ : N→ ty, written A[σ]. The substitution acts

on all free type variable in A at once. We define A[σ] mutually

recursive with the forward composition of substitutions:

X [σ] = σ X (σ1 ◦ σ2)X = (σ1 X)[σ2]

(A → B)[σ] = A[σ] → B[σ]

(∀. A)[σ] = ∀. A[⇑tyty σ] with ⇑
ty
ty σ = 0ty ·σ ◦ ↑

The substitutionA ·σ maps the index 0 toA and indices n+ 1 to σ n.
Note that this stream cons operation binds weaker than composition.

The shift substitution ↑ simply maps every index n to n + 1.
The beauty of this design over single-point substitutions lies in

the fact that multiple single-point substitutions interfere with each

other and permuting them introduces non-trivial side conditions.

Combining them into a parallel substitution leads to a more uniform

treatment and is crucial for an elegant equational theory.

Note that the mutual recursion above is not structural. In the

formalisation we follow the pattern presented in [3, 9] and first

develop the setup for the special case of renamings (substitutions

which only substitute variables).

Let us next consider terms and values. As both types and values

can appear as subexpressions, so do type and value variables and

we have to be able to substitute for both.

One possible solution is to equip terms and values with two

instantiation operations each – one for each occurring sort with

variables. This is exactly what was done in Autosubst, at least for

a limited class of syntactic systems. We again face the problem

(s t)[σ ,τ] = s[σ ,τ] t[σ ,τ] x[σ ,τ] = τ x

(s A)[σ ,τ] = s[σ ,τ]A[σ] (λA. s)[σ ,τ] = λA[σ]. s[⇑vltm (σ ,τ)]

(Λ. s)[σ ,τ] = Λ. s[⇑
ty
tm (σ ,τ)]

⇑vltm (σ ,τ) = (σ , 0vl · τ ◦ (idty ,↑))

⇑
ty
tm (σ ,τ) = (0ty ·σ ◦ ↑,τ ◦ (↑, idvl))

(τ ◦ (σ ′,τ ′))x = (τ x)[σ ′,τ ′]

Figure 1: Term and value substitutions for FCBV.

that the various instantiations interfere, and permuting them is

non-trivial. Take for example

s[τ]vl[σ]ty = s[σ]ty[λx . (σ x)[τ]ty]vl

where permuting the two substitutions requires us to replace types

in substituted values. Even more important, this fails to scale to

mutual inductive sorts like those of our example FCBV.

Again, parallelising substitutions is the key. Just as we combined

several single-point substitutions into a parallel substitution, we

now combine multiple parallel substitutions into a single vector of

substitutions, with one component for each sort that may occur

in a variable position. We will see that this leads again to a more

uniform treatment and a simple equational theory. In the following

we give the required definitions for FCBV to illustrate the approach.

The instantiation operations for terms and values are defined in

Figure 1, again mutually recursive with the forward composition

operation. We write s[σ ,τ] for a term s where all type variables are
substituted according to σ and all value variables according to τ ,
and similarly for values. The following aspects are worth pointing

out.

First, whenever we reach a variable, we have to project the

correct component, e.g. x[σ ,τ] = τ x for value variables.

Second, when a given subterm is of a different sort, we have to

select the correct instantiation function and subvector. Take for

example (s A)[σ ,τ], where the correct subvector for instantiating
the subterm A is [σ].

Third, and most interesting, the traversal of binders changes the

interpretation of indices in scope. We have to adjust the full substi-

tution vector via an up-operationwhich is more involved than in the

single-sorted setting (cf. ⇑
ty
ty). The component that corresponds to

the sort of the binder we just traversed, say σ , is modified almost as

before. While the index 0 is mapped to 0 as usual, we have to ensure

that n+ 1 is first mapped to σn and then adjusted to bypass the new

binder. For types this was achieved by simply postcomposing ↑ to σ .
We now instead have to postcompose a vector substitution which

matches the codomain of σ , has a shift for the bound sort, and is

otherwise the identity. We further have to construct and postcom-

pose such adjustments to all other components σ ′
of the original

vector substitution. For our concrete example these are the two

operations ⇑vltm and ⇑
ty
tm defined in Figure 1 which both construct

substitutions suitable for the sort of terms while incorporating a

newly bound value or, respectively, type. When we observe their

uses carefully, we see that they act on substitutions for the sort of

11

https://www.ps.uni-saarland.de/extras/lfmtp17

LFMTP ’17, September 8, 2017, Oxford, United Kingdom J. Kaiser, S. Schäfer, K. Stark

(s ·σ) 0 = s ↑ ◦ s ·σ ≡ σ

(s ·σ) (n + 1) = σ n σ 0 · ↑ ◦ σ ≡ σ

(s ·σ ′) ◦ σ ≡ s[σ] ·σ ′ ◦ σ

Figure 2: Interplay of cons, composition, and shifting.

s[idty , idvl] = s (†)

s[σ ,τ][σ ′,τ ′] = s[σ ◦ σ ′,τ ◦ (σ ′,τ ′)] (†)

idvl ◦ (σ ,τ) ≡ τ

τ ◦ (idty , idvl) ≡ τ

(τ ◦ (σ ′,τ ′)) ◦ (σ ′′,τ ′′) ≡ τ ◦ (σ ′ ◦ σ ′′,τ ′ ◦ (σ ′′,τ ′′))

Figure 3: Equational rules for values.

values, indicating that the subvector cast mentioned above may

in fact be the identity. We further observe that the postcomposed

adjustment may itself not have a component for the bound sort, in

which case the adjustment degenerates to the identity everywhere

and is tacitly omitted. Consider for example the definition of ⇑vltm,

which does not adjust the type component of the substitution, as

values do not occur in types.

Based on the aforementioned aspects we can extend the

σ -calculus [1] to vector substitutions, and thus obtain an elegant

equational theory. We recall the rules that govern the interplay of

basic forward composition, cons, and shifting in Figure 2, where

≡ denotes extensional equality of substitutions, lifted pointwise

to vectors. These hold regardless of the concrete syntactic system,

like FCBV.

The last equivalence of Figure 2 is different, as it describes a

family of equivalences with one instance for each occurring shape

of vector substitutions. This is tied to the fact that for each shape

of vector substitutions we obtain a separate composition operation

that precomposes a simple substitution to vector substitutions of

this shape. We use σ to denote arbitrary vector substitutions.

In addition, we have rules that are specific to each syntactic

sort, as they depend on the shape of the corresponding vector

substitution and instantiation operation. We give the rules for the

values of FCBV in Figure 3. The rules describe the interplay of

identities, composition, and instantiations with vector substitutions.

We further obtain, for each sort, an extensionality principle that

connects the equivalence of two substitutions to the equality of

terms under these substitutions. For the values of FCBV we have,

for example,

(σ ,τ) ≡ (σ ′,τ ′) =⇒ s[σ ,τ] = s[σ ′,τ ′]. (†)

If we combine the general rules of Figure 2, the sort specific

rules for each sort, and the defining equations of instantiation and

composition and read them from left to right we obtain a rewriting

system that can be used to simplify instantiation expressions. This

is exploited by our simplification tactic asimpl.

ty, tm, vl : Type

arr : ty → ty→ ty

all : (ty → ty)→ ty

app : tm → tm→ tm

tapp : tm → ty→ tm

vt : vl → tm

lam : ty → (vl→ tm)→ vl

tlam : (ty → tm)→ vl

Inductive ty : Type :=

| var_ty : index→ ty

| arr : ty → ty→ ty

| all : ty → ty.

Inductive tm : Type :=

| app : tm → tm→ tm

| tapp : tm → ty→ tm

| vt : vl → tm

with vl : Type :=

| var_vl : index→ vl

| lam : ty → tm→ vl

| tlam : tm → vl.

Figure 4: HOAS specification of FCBV (left) and the corre-
sponding inductively defined de Bruijn sorts (right).

tm[ty,vl]

app : tm → tm → tm

tapp : tm → ty → tm

vt : vl → tm

vl[ty,vl]

lam : ty → (vl → tm) → vl

tlam : (ty → tm) → vl

ty[ty]

arr : ty → ty → ty

all : (ty → ty) → ty

Figure 5: Dependency graph of FCBV.

For each sort we identify three rules of the rewriting system as

key lemmas, marked using (†), that suffice to obtain all remaining

rules for the corresponding sort. These have to be established from

first principles, following the structure of instantiation.

3 FROM HOAS TO DE BRUIJN
All definitions and statements of the previous section follow a

regular pattern where the only real input was the grammar of FCBV.

We exploit this regularity and automatically generate the inductive

term sorts, the corresponding vector instantiation operations, and

the equational theory for a given concise syntax description.

Our prototype implementation in Haskell parses a TWELF-like

second order HOAS system specification and produces the desired

output as a plain Coq source file. A sample input specification and

the desired inductive term sorts for FCBV are shown in Figure 4.

To understand why such HOAS specifications suffice to generate

the wealth of structure outlined above, we need to study the notion

of direct occurrence, a relation on syntactic sorts. Given a HOAS

constructor, say lam : ty → (vl → tm) → vl, we will refer to the

result type of each argument as head of said argument, here ty and

tm. When a given argument, e.g. vl → tm, has premises, we will call

them the binders of the argument, here vl. A sort y occurs directly
in sort x exactly when it appears as an argument head in one of x ’s
constructors. We refer to the transitive closure of direct occurence

simply as occurrence.
At this point we can determine if a given sort has to be equipped

with a variable constructor, as these are left implicit in the HOAS

specification. A sort x requires a variable constructor iff x is a binder

of some sort y and also occurs in y. For FCBV this applies to ty and

vl, but not to tm. If only the first condition is satisfied, the respective

binding constructor is vacuous and our implementation produces a

warning.

12

Towards Autosubst 2: Multi-Sorted de Bruijn and Vector Substitutions LFMTP ’17, September 8, 2017, Oxford, United Kingdom

Γ ⊢ s : A → B Γ ⊢ t : A

Γ ⊢ s t : B

Γ ⊢ s : ∀. A
Γ ⊢ s B : A[B · idty]

Γ ⊢v v : A

Γ ⊢ v : A

x < |Γ |

Γ ⊢v Γx : A

Γ,A ⊢ s : B

Γ ⊢v λA. s : A → B

Γ[↑] ⊢ s : A

Γ ⊢v Λ. s : ∀. A

s ⇓ λA. b t ⇓ u
b[idty ,u · idvl] ⇓ v

s t ⇓ v

s ⇓ Λ. b
b[A · idty , idvl] ⇓ v

s A ⇓ v v ⇓ v

Figure 6: Type system and reduction relation of FCBV.

The information can be visualised as a directed dependency

graph, where nodes correspond to sorts and an edge from x to y
indicates the direct occurrence ofy in x . Sorts that require variables
are marked by a bold border. The dependency graph for FCBV is

shown in Figure 5. We also show the shape of the corresponding

vector substitutions, that is a list of sorts that are the codomains

for each required substitution component. To be precise, a vector

substitution for a sort x must have a component for each occurring

sort y which has variables. Here, ty requires only one component

for ty itself, while tm and vl each require components for both ty

and vl.

We now process this dependency graph in topological order,

preserving the input order of sorts and constructors as much as

possible, to generate the desired output. Care has to be taken, as

sorts of a strongly connected component have to be processed

simultaneously. This means that the corresponding inductive term

sorts will be declared asmutually inductive, instantiation operations

will be defined mutually recursive, and the equational rules of the

affected sorts are proven simultaneously.

The generation of the inductive term sorts is straightforward. All

we have to do is aggregate the constructors, strip binders and, if nec-

essary, add a variable constructor. Instantiations are slightly more

interesting, as this is where all the de Bruijn binding mechanisms

are handled. As the shape of the substitution was determined from

the transitive notion of occurrence, we know that a suitable subvec-

tor exists whenever we move into subexpressions of a different sort.

For the correct choice of an up-operation we first determine the

head of the binding argument x and then the bound sort y and then

employ ⇑
y
x . The graph also tells us which of these up-operations

have to be generated, and how.

For the key lemmas of the equational theory (marked by †) we

construct explicit proof terms that follow the inductive structure

of the term sorts. These Lemmas are then used to realise the afore-

mentioned rewriting system under the tactic invocation asimpl.

4 WEAK NORMALISATION OF FCBV
To demonstrate our framework in action we present a concise

formal proof that FCBV is weakly normalising. In Figure 6, we define

both the typing rules and a big-step reduction relation from terms

to values in de Bruijn style.

We show that every closed, well-typed term s can be reduced to

a value v , that is s ⇓ v , using a unary logical relation. The logical

relation interprets (open) types as mappings from environments to

sets of values, realised as predicates. An environment ρ maps type

variables to sets of values and we write d · ρ for ρ extended with a

new type variable interpretation d .
Similar to the typing rules, the logical relation consists of two

parts, a term interpretation [[A]]ρ and a value interpretation (|A|)ρ .

[[A]]ρ := λs . ∃v . s ⇓ v ∧ (|A|)ρ v

(|X |)ρ := ρ X

(|A → B |)ρ := { λC . s | ∀v . (|A|)ρ v → [[B]]ρ s[idty ,v · idvl] }

(|∀. A|)ρ := {Λ. s | ∀Bd . [[A]]d · ρ s[B · idty , idvl] }

In order to handle type abstractions we need to know that this

definition is compatible with type substitution and weakening.

Lemma 4.1. For all types A, environments ρ, and renamings ξ we
have (|A[ξ]|)ρ = (|A|)ξ ◦ ρ . In particular, (|A[↑]|)d · ρ = (|A|)ρ holds.

Proof. By induction on A using the equations in Figure 2. �

Lemma 4.2. For all types A, environments ρ, and substitutions
σ we have (|A[σ]|)ρ = (|A|)σ ◦ (|−|)ρ . The result trivially lifts to the
term interpretation and we obtain [[A[B · idty]]]ρ = [[A]](|B |)ρ · ρ as a
special case.

Proof. Induction on A using Lemma 4.1. �

We extend the value interpretation to terms in contexts and

define semantic counterparts to our two syntactic typing relations.

(|Γ |)ρ := λτ . ∀x < |Γ |. (|Γx |)ρ (τ x)

Γ � s : A := ∀στρ. (|Γ |)ρ τ → [[A]]ρ s[σ ,τ]

Γ �v v : A := ∀στρ. (|Γ |)ρ τ → (|A|)ρ v[σ ,τ]

We now prove that syntactic typing implies semantic typing.

Theorem 4.3 (Soundness). For all Γ, s,v,A we have

Γ ⊢ s : A → Γ � s : A

Γ ⊢v v : A → Γ �v v : A

Proof. By mutual induction on the typing derivations. The type

application case introduces a substitution on types which is handled

with Lemma 4.2. Meanwhile type abstraction relies on Lemma 4.1.

The proof also depends on two non-trivial substitution lemmas for

the cases of abstraction and type abstraction.

s[⇑vltm (σ ,τ)][idty ,v · idvl] = s[σ ,v · τ]

s[⇑
ty
tm (σ ,τ)][A · idty , idvl] = s[A · σ ,τ]

Both are solved automatically by our framework. �

Corollary 4.4 (Weak Normalisation). For all s,A we have

⊢ s : A → ∃v . s ⇓ v

Note that our definitions and proofs rely on the syntactic distinc-

tion between terms and values. For the logical relation, it is crucial

that ρ maps type variables to sets of values, instead of arbitrary

terms. More details can be found in the accompanying formalisa-

tion.

13

LFMTP ’17, September 8, 2017, Oxford, United Kingdom J. Kaiser, S. Schäfer, K. Stark

5 CONCLUSION AND FUTUREWORK
We have outlined the theory and design of Autosubst 2, a Coq tool

that supports reasoning about languages with binders for mutual

inductive sorts. Given a HOAS specification, our tool generates

a Coq source file containing inductive de Brujin term sorts, cor-

responding instantiation operations with vector substitutions, as

well as type classes and instances that implement a normalisation

procedure.

The presented implementation should be considered work in

progress. The automation still requires further improvement and

a systematic comparison with the previous approach. Following

the ideas presented in [4], we further want to extend Autosubst to

automatically prove results like Lemmas 4.1 and 4.2 which establish

the compatibility of renaming and substitution of a given recursive

definition over our term sorts.

At the moment Autosubst 2 is provided as an external tool but

we are considering an implementation as a Coq plugin to provide a

better user experience and further performance improvements.

REFERENCES
[1] Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. 1991. Explicit substitutions.

Journal of functional programming 1, 4 (1991), 375–416.

[2] Andreas Abel. 2001. A Third-Order Representation of the λµ-Calculus. Electronic
Notes in Theoretical Computer Science 58, 1 (2001), 97 – 114. MERLIN 2001:

Mechanized Reasoning about Languages with Variable Binding (in connection

with IJCAR 2001).

[3] Robin Adams. 2004. Formalizedmetatheory with terms represented by an indexed

family of types. In International Workshop on Types for Proofs and Programs.
Springer, 1–16.

[4] Guillaume Allais, James Chapman, Conor McBride, and James McKinna. 2017.

Type-and-scope Safe Programs and Their Proofs. In Proceedings of the 6th ACM
SIGPLAN Conference on Certified Programs and Proofs (CPP 2017). ACM, 195–207.

[5] Nicolaas Govert de Bruijn. 1972. Lambda calculus notation with nameless dum-

mies, a tool for automatic formula manipulation, with application to the Church-

Rosser theorem. Indagationes Mathematicae (Proceedings) 75, 5 (1972), 381 –

392.

[6] Jonas Kaiser, Tobias Tebbi, and Gert Smolka. 2017. Equivalence of System F

and λ2 in Coq based on Context Morphism Lemmas. In Proceedings of CPP 2017.
ACM.

[7] Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Proceed-
ings of the ACM SIGPLAN’88 Conference on Programming Language Design and
Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988. ACM, 199–208.

[8] Steven Schäfer, Gert Smolka, and Tobias Tebbi. 2015. Completeness and decidabil-

ity of de Bruijn substitution algebra in Coq. In Proceedings of the 2015 Conference
on Certified Programs and Proofs. ACM, 67–73.

[9] Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Reasoning

with de Bruijn terms and parallel substitutions. In International Conference on
Interactive Theorem Proving. Springer, 359–374.

14

	Abstract
	1 Introduction
	2 From Parallel to Vector Substitutions
	3 From HOAS to de Bruijn
	4 Weak Normalisation of FCBV
	5 Conclusion and Future Work
	References

